Soft matter materials, such as polymers, membranes, proteins, are often electrically charged. This makes them water soluble, which is of great importance in technological application and a prerequisite for biological function. We discuss a few static and dynamic systems that are dominated by charge effects. One class comprises complexation between oppositely charged objects, for example the adsorption of charged ions or charged polymers on oppositely charged substrates of different geometry. Here the main questions are whether adsorption occurs and what the effective charge of the resulting complex is. We explicitly discuss the adsorption behavior of polyelectrolytes on substrates of planar, cylindrical and spherical geometry with specific reference to DNA adsorption on supported charged lipid layers, DNA adsorption on oppositely charged cylindrical dendro-polymers, and DNA binding on globular histone proteins, respectively. In all these systems salt plays an important role, and some of the important features can already be obtained on the linear Debye-Hückel level. The second class comprises effective interactions between similarly charged objects. Here the main theme is to understand the experimental finding that similarly and highly charged bodies attract each other in the presence of multi-valent counterions. This is demonstrated using field-theoretic arguments as well as Monte-Carlo simulations for the case of two homogeneously charged bodies. Realistic surfaces, on the other hand, are corrugated and also exhibit modulated charge distributions, which is important for static properties such as the counterion-density distribution, but has even more pronounced consequences for dynamic properties such as the counterion mobility. More pronounced dynamic effects are obtained with highly condensed charged systems in strong electric fields. Likewise, an electrostatically collapsed highly charged polymer is unfolded and oriented in strong electric fields. All charged systems occur in water, and water by itself is not a very well understood material. At the end of this review, we give a very brief and incomplete account of the behavior of water at planar surfaces. The coupling between water structure and charge effects is largely unexplored, and a few directions for future research are sketched. On an even more nanoscopic level, we demonstrate using ab-initio methods that specific interactions between oppositely charged groups (which occur when their electron orbitals start to overlap) are important and cause ion-specific effects that have recently moved into the focus of interest.
The hydrophobic effect, i.e., the poor solvation of nonpolar parts of molecules, plays a key role in protein folding and more generally for molecular self-assembly and aggregation in aqueous media. The perturbation of the water structure accounts for many aspects of protein hydrophobicity. However, to what extent the dispersion interaction between molecular entities themselves contributes has remained unclear. This is so because in peptide folding interactions and structural changes occur on all length scales and make disentangling various contributions impossible. We address this issue both experimentally and theoretically by looking at the force necessary to peel a mildly hydrophobic single peptide molecule from a flat hydrophobic diamond surface in the presence of water. This setup avoids problems caused by bubble adsorption, cavitation, and slow equilibration that complicate the much-studied geometry with two macroscopic surfaces. Using atomic-force spectroscopy, we determine the mean desorption force of a single spider-silk peptide chain as F ؍ 58 ؎ 8 pN, which corresponds to a desorption free energy of Ϸ5 kBT per amino acid. Our all-atomistic molecular dynamics simulation including explicit water correspondingly yields the desorption force F ؍ 54 ؎ 15 pN. This observation demonstrates that standard nonpolarizable force fields used in classical simulations are capable of resolving the fine details of the hydrophobic attraction of peptides. The analysis of the involved energetics shows that water-structure effects and dispersive interactions give contributions of comparable magnitude that largely cancel out. It follows that the correct modeling of peptide hydrophobicity must take the intimate coupling of solvation and dispersive effects into account.atomic-force microscopy ͉ hydrophobic effect ͉ molecular dynamics simulation ͉ single molecules ͉ protein adsorption F or scientists working with biological or soft matter systems, understanding what holds the world together largely means unraveling the mechanism behind the so-called hydrophobic effect. The term hydrophobic attraction (HA) was initially introduced to describe the attraction between small nonpolar molecules such as methane in water (1, 2). It is nowadays more broadly used to describe forces between all kinds of nonpolar objects in aqueous environments, implying a common mechanism for protein folding, micellization, self-assembly of lipids, oil-water demixing, and thus any supermolecular aggregation in water (3). For predicting protein structures and function the magnitude and nature of the HA acting between peptide segments is a central issue that has not been fully resolved. Much effort was put in force measurements between well defined model systems, for example mica surfaces made hydrophobic or micrometer-sized plastic beads. However, these systems are notoriously plagued by secondary effects, such as bubble adsorption and cavitation effects (4, 5) or compositional rearrangements (6). In simulations of interacting planar plates, similar eff...
Much is written about "hydrophobic forces" that act between solvated molecules and nonpolar interfaces, but it is not always clear what causes these forces and whether they should be labeled as hydrophobic. Hydrophobic effects roughly fall in two classes, those that are influenced by the addition of salt and those that are not. Bubble adsorption and cavitation effects plague experiments and simulations of interacting extended hydrophobic surfaces and lead to a strong, almost irreversible attraction that has little or no dependence on salt type and concentration. In this paper, we are concerned with hydrophobic interactions between single molecules and extended surfaces and try to elucidate the relation to electrostatic and ion-specific effects. For these nanoscopic hydrophobic forces, bubbles and cavitation effects play only a minor role and even if present cause no equilibration problems. In specific, we study the forced desorption of peptides from nonpolar interfaces by means of molecular dynamics simulations and determine the adsorption potential of mean force. The simulation results for peptides compare well with corresponding AFM experiments. An analysis of the various contributions to the total peptide-surface interactions shows that structural effects of water as well as van der Waals interactions between surface and peptide are important. Hofmeister ion effects are studied by separately determining the effective interaction of various ions with hydrophobic surfaces. An extension of the Poisson-Boltzmann equation that includes the ion-specific potential of mean force yields surface potentials, interfacial tensions, and effective interactions between hydrophobic surfaces. There, we also analyze the energetic contributions to the potential of mean force and find that the most important factor determining ion-specific adsorption at hydrophobic surfaces can best be described as surface-modified ion hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.