Most document recognition work to date has been performed on English text. Because of the large overlap of the character sets found in English and major Western European languages such as French and German, some extensions of the basic English capability to those languages have taken place. However, automatic language identification prior to optical character recognition is not commonly available and adds utility to such systems.Languages and their scripts have attributes that make it possible to determine the language of a document automatically. Detection of the values of these attributes requires the recognition of particular features of the document image and, in the case of languages using Latin-based symbols, the character syntax of the underlying language.We have developed techniques for distinguishing which language is represented in an image of text. This work is restricted to a small but important subset of the world's languages. The method first classifies the script into two broad classes: Han-based and Latin-based. This classification is based on the spatial relationships of features related to the upward concavities in character structures. Language identification within the Han script class (Chinese, Japanese, Korean) is performed by analysis of the distribution of optical density in the text images. We handle 23 Latin-based languages using a technique based on character shape codes, a representation of Latin text that is inexpensive to compute.
It is urgent to understand how to effectively communicate public health messages during the COVID-19 pandemic. Previous work has focused on how to formulate messages in terms of style and content, rather than on who should send them. In particular, little is known about the impact of spokesperson selection on message propagation during times of crisis. We report on the effectiveness of different public figures at promoting social distancing among 12,194 respondents from six countries that were severely affected by the COVID-19 pandemic at the time of data collection. Across countries and demographic strata, immunology expert Dr. Anthony Fauci achieved the highest level of respondents’ willingness to reshare a call to social distancing, followed by a government spokesperson. Celebrity spokespersons were least effective. The likelihood of message resharing increased with age and when respondents expressed positive sentiments towards the spokesperson. These results contribute to the development of evidence-based knowledge regarding the effectiveness of prominent official and non-official public figures in communicating public health messaging in times of crisis. Our findings serve as a reminder that scientific experts and governments should not underestimate their power to inform and persuade in times of crisis and underscore the crucial importance of selecting the most effective messenger in propagating messages of lifesaving information during a pandemic.
Traditional measures of success for film, such as box-office revenue and critical acclaim, lack the ability to quantify long-lasting impact and depend on factors that are largely external to the craft itself. With the growing number of films that are being created and large-scale data becoming available through crowd-sourced online platforms, an endogenous measure of success that is not reliant on manual appraisal is of increasing importance. In this article we propose such a ranking method based on a combination of centrality indices. We apply the method to a network that contains several types of citations between more than 40,000 international feature films. From this network we derive a list of milestone films, which can be considered to constitute the foundations of cinema. In a comparison to various existing lists of ‘greatest’ films, such as personal favourite lists, voting lists, lists of individual experts, and lists deduced from expert polls, the selection of milestone films is more diverse in terms of genres, actors, and main creators. Our results shed light on the potential of a systematic quantitative investigation based on cinematic influences in identifying the most inspiring creations in world cinema. In a broader perspective, we introduce a novel research question to large-scale citation analysis, one of the most intriguing topics that have been at the forefront of scientific enquiries for the past fifty years and have led to the development of various network analytic methods. In doing so, we transfer widely studied approaches from citation analysis to the the newly emerging field of quantification efforts in the arts. The specific contribution of this paper consists in modelling the multidimensional cinematic references as a growing multiplex network and in developing a methodology for the identification of central films in this network.
We address the multi-satellite scheduling problem with limited observation capacities that arises from the need to observe a set of targets on the Earth's surface using imaging resources installed on a set of satellites. We define and analyze the conflict indicators of all available visible time windows of missions, as well as the feasible time intervals of resources. The problem is then formulated as a mixed integer linear programming model, in which constraints are derived from a careful analysis of the interdependency between feasible time intervals that are eligible for observations. We apply the proposed model to several different problem instances that reflect real-world situations. The computational results verify that our approach is effective for obtaining optimum solutions or solutions with a very good quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.