For technical reasons, large three-dimensional compound parabolic concentrators (CPC's) are often built from facets with either no or only one-dimensional curvature. We analyze CPC approximations made with various numbers of axial and circumferential subdivisions. Incident radiation within half-angles of 10 degrees and 30 degrees is considered. The reflectivity of the mirrors is assumed to be 90% or 95%. The performance of faceted concentrators can be significantly improved by optimization as compared with heuristic CPC approaches. The highest increase in transmission that we observed was 19% greater as compared with that of a heuristic CPC approximation. The shapes of the optimized concentrators differ from that of a classic CPC, and most of the optimized concentrators are longer than a classic CPC. For practical concentrators with a small number of facets, the optimized geometry provides better performance than a heuristic approximation of the CPC shape.
An optical measurement method for nonimaging radiation concentrators is proposed. A Lambertian light source is placed in the exit aperture of the concentrator. Looking into the concentrator's entrance aperture from a remote position, one can photograph the transmission patterns. The patterns show the transmission of radiation through the concentrator with the full resolution of the four-dimensional phase space of geometric optics. By matching ray-tracing simulations to the measurement, one can achieve detailed and accurate information about the geometry of the concentrator. This is a remote, noncontact measurement and can be performed in situ for installed concentrators. Additional information regarding small-scale reflector waviness and surface reflectivity can also be obtained from the same measurement with additional analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.