Recently, techniques for the acquisition of three-dimensional tomographic and four-dimensional time-resolved data sets have emerged, allowing for the analysis of mm 3 volumes of material with nm-scale resolution. The ability to merge multi-modal data sets acquired via multiple techniques for the quantitative analysis of structure, chemistry and phase information is still a significant challenge. Large three-dimensional data sets have been acquired by time-resolved diffraction contrast tomography (DCT) and a new TriBeam tomography technique with high spatial resolution to address grain growth in strontium titanate. A methodology for combining three-dimensional tomographic data has been developed. Algorithms for the alignment of orientation reference frames, unification of sampling grids and automated grain matching have been integrated, and the resulting merged data set permits the simultaneous analysis of all tomographic data on a voxel-by-voxel and grain-by-grain basis. Quantitative analysis of merged data sets collected using DCT and TriBeam tomography shows that the spatial resolution of the DCT technique is limited near grain boundaries and the sample edge, resolving grains down to 10 mm diameter for the reconstruction method used. While the TriBeam technique allows for higher-resolution analysis of boundary plane location, it is a destructive tomography approach and can only be employed at the conclusion of a four-dimensional experiment
Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding twodimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques.
Nondestructive X‐ray diffraction contrast tomography imaging was used to characterize the microstructure evolution in a polycrystalline bulk strontium titanate specimen. Simultaneous acquisition of diffraction and absorption information allows for the reconstruction of shape and orientation of more than 800 grains in the specimen as well as porosity. Three‐dimensional microstructure reconstructions of two coarsening states of the same specimen are presented alongside a detailed exploration of the crystallographic, topological and morphological characteristics of the evolving microstructure. The overall analysis of the 3D structure shows a clear signature of the grain boundary anisotropy, which can be correlated to surface energy anisotropy: the grain boundary plane distribution function shows an excess of ⟨100⟩‐oriented interfaces with respect to a random structure. The results are discussed in the context of interface property anisotropy effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.