a b s t r a c tThere is a wide range of routine skid resistance measurement devices on the market. All of them are measuring the friction force between a rubber wheel and the wetted road surface.Common to all of them is that they are relatively complex and costly because generally a truck carrying a large water tank is needed to wet the surface with a defined water layer.Because of the limited amount of water they can carry they are limited in range. Besides that the measurement is depending on factors like water film thickness, temperature, measurement speed, rubber aging, rubber wear and even road evenness and curviness. All of these factors will affect the skid resistance and are difficult to control. We present a concept of contactless skid resistance measurement which is based on optical texture measurement and consists of two components: measurement of the pavement texture by means of an optical measuring system and calculation of the skid resistance based on the measured texture by means of a rubber friction model. The basic assumptions underlying the theoretical approach and the model itself based on the theory of Persson are presented. The concept is applied to a laboratory device called Wehner/Schulze (W/S) machine to prove the theoretical approach. The results are very promising. A strong indication could be provided that skid resistance could be measured without contact in the future. © 2015 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on behalf of Owner. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
No abstract
Over the past decades a wide range of routine measurement devices has been developed, all of them measuring the friction force between a rubber wheel and the (wetted) road surface. At the same time, many efforts have been undertaken to predict skid resistance solely from texture measurements. This paper presents a concept of contactless skid resistance measurement which is based on optical texture measurement and consists of two components: (1) measurement of the pavement texture by means of an optical measuring system and (2) calculation of skid resistance based on the measured texture by means of a rubber friction model. The basic assumptions and equations underlying the theoretical approach are presented. Two skid resistance-measuring devices were chosen to prove the theoretical approach: one laboratory device called Wehner/Schulze machine which corresponds to a locked-wheel braking test and another, the ViaFriction w device of ViaTech AS which measures the skid resistance under controlled longitudinal slip and corresponds to ABS braking conditions. The results are very promising although in the case of the ViaFriction w device only a few surfaces could be tested. A close relation between measured and predicted friction coefficients could be found. Thus, a strong indication can be provided that skid resistance could be measured without contact in the future.
Assessment 3D vehicle modelLoading Acceleration a b s t r a c t Pavements are 3D in their shape. They can be captured in three dimensions by modern road mapping equipment which allows for the assessment of pavement evenness in a more holistic way as opposed to current practice which divides into longitudinal and transversal evenness. It makes sense to use 3D vehicle models to simulate the effects of 3D surface data on certain functional criteria like pavement loading, cargo loading and driving comfort. In order to evaluate the three criteria mentioned two vehicle models have been created: a passenger car used to assess driving comfort and a truck-semitrailer submodel used to assess pavement and cargo loading. The vehicle models and their application to 3D surface data are presented. The results are well in line with existing single-track (planar) models. Their advantage over existing 1D/2D models is demonstrated by the example of driving comfort evaluation. Existing "geometric" limit values for the assessment of longitudinal evenness in terms of the power spectral density could be used to establish corresponding limit values for the dynamic response, i.e. driving comfort, pavement loading and cargo loading. The limit values are well in line with existing limit values based on planar vehicle models. They can be used as guidelines for the proposal of future limit values. The investigations show that the use of 3D vehicle models is an appropriate and meaningful way of assessing 3D evenness data gathered by modern road mapping systems. © 2015 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on behalf of Owner. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.