A retinal laser ellipsometer has been developed by coupling a Fourier ellipsometer to a laser scanning system. The instrument has been used to assess the origin and the amount of change in the state of polarization of a laser beam that has double passed the retina around the optic nerve head of postmortemhuman eyes. Eight eyes with no history of glaucoma were studied. At 200 points around the optic nerve head of each eye the Mueller matrices of the retina were examined for the amount of retardation, the orientation of the optic axis, and the amount of dichroism. The degree of polarization preservation of the detected light varied between 50% and 87%. Little dichroism was found, and there was no obvious correlation to the physical arrangement of any retinal structure. However, there was a substantial amount of linear uniaxial birefringence with the optic axis perpendicular to the incident laser beam. Furthermore the calculated optic axis direction showed a strong correlation with the physical orientation of the radial symmetrically arranged retinal nerve fiber axons around the optic nerve head. The local distribution of the corresponding retardation values showed two maxima that coincided with the areas of the thickest retinal nerve fiber layer. These results support the hypothesis that the thickness of the form birefringent retinal nerve fiber layer can be assessed by ellipsometric methods.
Laser scanning tomography can be used to assess retinal nerve fiber layer thickness and optic disc topography of the human eye. A pinhole is located at a plane conjugate to the focal plane of the scanning laser beam. This so-called confocal configuration assures that only the light originating from the illuminated focal plane on the retina passes through the pinhole and is detected by the photomultiplier. Consequently, images with high spatial resolution in all directions are obtained. An active optical system (active mirror) further improves the lateral/depth resolution of the laser tomographic scanner. By partially compensating for the optical aberrations introduced by the cornea and lens, the active optical system allows the illuminating beam to be enlarged to 6 mm, thus improving depth resolution twofold.
A novel technique, Multiply Scattered Light Tomography (MSLT), and confocal Infrared Imaging are used to provide diagnostic information using a comfortable, rapid, and noninvasive method. We investigated these techniques in detecting neovascularization in age-related macular degeneration. The MSLT used a Vertical Cavity Surface Emitting Laser (VCSEL) at 850 nm, while the confocal imaging technique used either the VCSEL or a 790 nm laser diode. Both were implemented into the topographical scanning system (TopSS, Laser Diagnostic Technologies, Inc.) Confocal imaging with both lasers provided different information about neovascularization as a function of focal plane, and different also from MSLT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.