RanBP2/Nup358 is an essential protein with roles in nuclear transport and mitosis, and is one of the few known SUMO E3 ligases. However, why RanBP2 functions in vivo has been unclear: throughout the cell cycle it stably interacts with RanGAP1*SUMO1 and Ubc9, whose binding sites overlap with the E3 ligase region. Here we show that cellular RanBP2 is quantitatively associated with RanGAP1, indicating that complexed rather than free RanBP2 is the relevant E3 ligase. Biochemical reconstitution of the RanBP2/RanGAP1*SUMO1/Ubc9 complex enabled us to characterize its activity on the endogenous substrate Borealin. We find that the complex is a composite E3 ligase rather than an E2-E3 complex, and demonstrate that complex formation induces activation of a catalytic site that shows no activity in free RanBP2. Our findings provide insights into the mechanism of an important E3 ligase, and extend the concept of multisubunit E3 ligases from ubiquitin to the SUMO field.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.