This paper studies both the thermal and mechanical behavior of brake system models in the case of the emergency braking of a mine hoist model. Using a step-by-step approach inspired by studies conducted on small brake systems with high rotation speeds specific to road and rail vehicles, a comparative analysis using a computer simulation was performed for the two types of brakes of a mine hoist system. A Solidworks model was built for two configurations: the drum-and-shoe and the disc-and-pads, and it was imported to COMSOL Multiphysics, where the material properties and simulation parameters were defined. Simulations were performed for each configuration, first using a Heat transfer module in the solids to investigate the frictional heat. The results showed the locations of the hot points on the disc and on the drum, with the surface temperature reaching 97 °C on the disc and 115 to 159 °C on the drum. Next, simulations using a Structural Mechanics module were run to obtain the stress and deformation induced by the heat generated during braking. The von Mises stress of the drum-and-shoe brake occurred on the external surface of the drum and had a value of 2 × 108 N/m2. For the disc-and-pad brake, the stress occurred towards the edges of the brake pad contact and was 4 × 108 N/m2. Both values were under the yield stress of the passive brake element material. Regarding the deformations, for the drum-and-shoe brake, it appeared towards the outer boundary of the drum, being 0.45 mm, and for the disc-and-pad brake, it was situated at the external edge of the disc, being 0.25 mm. COMSOL Multiphysics allowed the evaluation of the thermo-mechanical behavior using noninvasive techniques since actual emergency braking testing on a working mine hoisting installation is not possible because of safety and logistic concerns.
The sustainable exploitation of raw materials, with improved safety and increased productivity, is closely linked to the development of mechanical mining installations. Mine hoists are designed for the transport of material, equipment and personnel between the mine surface and the underground. The mine hoist braking system is of paramount importance in its safe operation. Thus, for both drum and disc brake systems, the temperature of the friction surfaces is important for ensuring efficient braking, as exceeding the temperature threshold causes a decrease in the braking capacity. In this paper we present a numerical calculation model for the temperature of the braking disc of a mine hoist in the case of emergency braking. A real-scale model was built, based on the cable drive wheel and disc brake system of a hoisting machine used in Romania. Real material characteristics were imposed for the brake discs, the cable drive wheel and the brake pads. The simulation was performed for decelerations of 3, 3.5, 4 and 4.5 m/s2. The analysis shows that regardless of the acceleration and time simulated, the disc temperature reaches its maximum after 1.35 s of emergency braking. This value does not exceed the 327 °C limit where, according to previous studies, the braking power starts to fade. It means that the emergency braking is safe for the acceleration and masses under consideration, in the case of the studied mine hoist.
The sustainability of lignite production requires, among other factors, cost reduction, high efficiency, as well as the increase of the production capacity. In order to rationalize and increase the efficiency of lignite mines, the optimization of the production process is necessary. In this respect, equipment revitalization and modernization is a key issue. This paper deals with the analysis of the time response of the boom structure of a bucket wheel excavator (BWE) during operation. For this, we propose a virtual model of the boom, on which a variable-in-time force generated by the bucket wheel acts. The kinematic drive chain of the bucket wheel and the conveyor belt, which are also vibration generators, were simulated only by the static load produced on the excavator's boom. Thus, it is possible to highlight the time response of the load-bearing structure (the boom) of the bucket wheel to the action of forces resulting from the cutting of the face under pretensioning conditions. The forces generated by the excavation process have high values and a slow variation over time, depending on the bucket wheel's rotation speed and the number of buckets installed on the wheel. The dynamic time response simulation was performed considering the global damping variation as dependent on frequency. The simulation was done for both the excavation of a homogeneous material and for the case of the sudden appearance of a hard material inclusion (boulder) during homogenous material cutting.
For the ERc 1400-30/7 type bucket wheel excavator (BWE) used in various Romanian open pit mines, a virtual model of the boom was constructed in SolidWorks. On this model, the variable in time forces acting during the excavation process were simulated, and the time history analysis (time response) was performed. This dynamic time response analysis was performed for excavation of homogenous material only, considering the damping as being of Rayleigh’s type, where the damping matrix is a linear combination of the mass and stiffness matrices. Based on the conducted analysis, the displacements of the boom during excavation were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.