In this paper we present a complete and detailed computational model of the response of the hybrid Muon Telescope (MuTe), designed to perform muography volcanic studies. This instrument combines two particle detection techniques: first, a muon hodoscope based on two panels of plastic scintillator bars; and a Water Cherenkov detector located behind the rear scintillator panel acting both as a coincidence and a discriminating detector. The simulation model includes: materials, geometries, dimensions, and the photo-sensitiveness of the detectors. The simulation results, in agreement with the measured data, were used to set up the muon detector trigger for the expected energy dependent signal.
ARTI is a complete framework designed to simulate the signals produced by the secondary particles emerging from the interaction of single, multiple, and even from the complete flux of primary cosmic rays with the atmosphere. These signals are simulated for any particle detector located at any place (latitude, longitude and altitude), including the real-time atmospheric, geomagnetic and detector conditions. Formulated through a sequence of codes written in C++, Fortran, Bash and Perl, it provides an easy-to-use integration of three different simulation environments: MagnetoCosmics, CORSIKA and Geant4. These tools evaluate the geomagnetic field effects on the primary flux and simulate atmospheric showers of cosmic rays and the detectors’ response to the secondary flux of particles. In this work, we exhibit the usage of the ARTI framework by calculating the total expected signal flux at eight selected sites of the Latin American Giant Observatory: a cosmic ray Observatory all over Latin America covering a wide range of altitudes, latitudes and geomagnetic rigidities. ARTI will also calculate the signal flux expected during the sudden occurrence of a gamma-ray burst or the flux of energetic photons originating from steady gamma sources. It also compares these fluxes with the expected background when they are detected in a single water Cherenkov detector deployed in a high-altitude site. Furthermore, by using ARTI, it is possible to calculate in a very precise way the expected flux of high-energetic muons and other secondaries at the ground level and to inject them through geological structures for muography applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.