Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30/GPER, in addition to classical nuclear estrogen receptors (ERα/β), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized a selective agonist of GPR30, G-1 (1). To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of a G-1 analog, G15 (2) that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 reveals that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.
A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A K
i value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds.
Cysteine proteases
are important targets for the discovery of novel
therapeutics for many human diseases. From parasitic diseases to cancer,
cysteine proteases follow a common mechanism, the formation of an
encounter complex with subsequent nucleophilic reactivity of the catalytic
cysteine thiol group toward the carbonyl carbon of a peptide bond
or an electrophilic group of an inhibitor. Modulation of target enzymes
occurs preferably by covalent modification, which imposes challenges
in balancing cross-reactivity and selectivity. Given the resurgence
of irreversible covalent inhibitors, can they impair off-target effects
or are reversible covalent inhibitors a better route to selectivity?
This Perspective addresses how small molecule inhibitors may achieve
selectivity for different cathepsins, cruzain, rhodesain, and falcipain-2.
We discuss target- and ligand-based designs emphasizing repurposing
inhibitors from one cysteine protease to others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.