A mechanism for polarized transport of vesicles by means of osmotic propulsions is proposed and substantiated for tip-growing cells. An analysis is presented which shows that in pollen tubes the gradient of cytosolic water potential can drive vesicle movement either in the anterograde or retrograde direction, depending on the vesicle position, its radius and the phase of growth oscillation. The importance of transcellular water flow for cytoskeletal dynamics and cell motility is highlighted.
A mechanism for polarized transport of vesicles by means of osmotic propulsions is proposed and substantiated for tip-growing cells. An analysis is presented which shows that in pollen tubes the gradient of cytosolic water potential can drive vesicle movement either in the anterograde or retrograde direction, depending on the vesicle position, its radius and the phase of growth oscillation. The importance of transcellular water flow for cytoskeletal dynamics and cell motility is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.