Mesenchymal stem cells (MSCs) have been reported to preserve renal function in various models of acute kidney injury (AKI). Different routes were used to transplant MSCs but the role of cell transplantation routes in directing outcomes has been unknown. In the present study, we evaluated organ bio-distributions of transplanted MSCs, and correlated survival of transplanted cells with outcomes in mice with cisplatinum-induced AKI. We found that after intravenous administration MSCs were largely localized in pulmonary capillaries and only a minute fraction of MSCs entered kidneys and the cells survived only transiently. Therefore, we also transplanted MSCs via intraperitoneal and renal subcapsular routes. Transplanted MSCs survived longer in peritoneal cavity and renal subcapsular space. Interestingly, when MSCs transplantation was followed by cisplatinum-induced AKI, renal morphology and renal functions were better preserved, irrespective of the cell transplantation route. As transplanted MSCs did not migrate to kidneys from either peritoneal cavity or renal subcapsular space, this finding suggested that migration of cells was not required for the beneficial response. The possibility of indirect mechanisms was confirmed when administration of the conditioned medium from MSCs also protected renal tubular cells from cisplatinum-induced cytotoxicity. We identified presence of over forty regulatory cytokines in the conditioned medium obtained from MSCs. Since paracrine factors released by transplanted cells accounted for improvements, it appears that the route of cell transplantation is not critical for realizing benefits in AKI of cell therapy with MSCs. Studies of specific cytokines secreted by MSCs will help to obtain new therapeutic mechanisms for renal protection.
Despite its success as a potent antineoplastic agent, ∼25% of patients receiving cisplatin experience acute kidney injury (AKI) and must discontinue therapy. Impaired magnesium homeostasis has been linked to cisplatin-mediated AKI, and because magnesium deficiency is widespread, we examined the effect of magnesium deficiency and replacement on cisplatin-induced AKI in physiologically relevant older female mice. Magnesium deficiency significantly increased cisplatin-associated weight loss and markers of renal damage (plasma blood urea nitrogen and creatinine), histological changes, inflammation, and renal cell apoptosis and modulated signaling pathways (e.g., ERK1/2, p53, and STAT3). Conversely, these damaging effects were reversed by magnesium. Magnesium deficiency alone significantly induced basal and cisplatin-mediated oxidative stress, whereas magnesium replacement attenuated these effects. Similar results were observed using cisplatin-treated LLC-PK1 renal epithelial cells exposed to various magnesium concentrations. Magnesium deficiency significantly amplified renal platinum accumulation, whereas magnesium replacement blocked the augmented platinum accumulation after magnesium deficiency. Increased renal platinum accumulation during magnesium deficiency was accompanied by reduced renal efflux transporter expression, which was reversed by magnesium replacement. These findings demonstrate the role of magnesium in regulating cisplatin-induced AKI by enhancing oxidative stress and thus promoting cisplatin-mediated damage. Additional in vitro experiments using ovarian, breast, and lung cancer cell lines showed that magnesium supplementation did not compromise cisplatin's chemotherapeutic efficacy. Finally, because no consistently successful therapy to prevent or treat cisplatin-mediated AKI is available for humans, these results support developing more conservative magnesium replacement guidelines for reducing cisplatin-induced AKI in cancer patients at risk for magnesium deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.