OBJECTIVE: To identify risk factors for death among patients with severe asthma. METHODS: This was a nested case-control study. Among the patients with severe asthma treated between December of 2002 and December of 2010 at the Central Referral Outpatient Clinic of the Bahia State Asthma Control Program, in the city of Salvador, Brazil, we selected all those who died, as well as selecting other patients with severe asthma to be used as controls (at a ratio of 1:4). Data were collected from the medical charts of the patients, home visit reports, and death certificates. RESULTS: We selected 58 cases of deaths and 232 control cases. Most of the deaths were attributed to respiratory causes and occurred within a health care facility. Advanced age, unemployment, rhinitis, symptoms of gastroesophageal reflux disease, long-standing asthma, and persistent airflow obstruction were common features in both groups. Multivariate analysis showed that male gender, FEV1 pre-bronchodilator < 60% of predicted, and the lack of control of asthma symptoms were significantly and independently associated with mortality in this sample of patients with severe asthma. CONCLUSIONS: In this cohort of outpatients with severe asthma, the deaths occurred predominantly due to respiratory causes and within a health care facility. Lack of asthma control and male gender were risk factors for mortality.
BackgroundThe relationship between smoking, household pollution, dual exposure and severity of asthma in adults has not been sufficiently studied. We examined and compared the effects of cigarette smoking, domestic wood burning pollution and dual exposure (tobacco and wood burning) upon asthma severity in adults.MethodsThis was a cross-sectional study performed with 452 individuals with mild to moderate asthma and 544 patients with severe asthma (previously untreated). Smoking and exposure to wood smoke were identified and quantified through questionnaires to evaluate current and/or previous exposure; objective determination of cigarette exposure was obtained through the measurement of urinary cotinine. Asthma control was evaluated through Asthma Control Questionnaire; and severity was classified according to the Global Initiative for Asthma criteria. Subjects were grouped according to exposure type into 4 groups: smokers, household pollution, dual-exposure and no-exposure. Chi square, Mann–Whitney, and Kruskal–Wallis tests were used for comparisons between groups.ResultsOut of 996 included individuals, 78 (7.8%) were exposed to cigarette smoking alone, 358 (35.9%) to household pollution alone, 155 (15.6%) to the two exposures combined and 405 (40.7%) were not exposed. Compared to unexposed individuals, exposure to household pollution resulted in poorer asthma control, higher proportion of severe asthma, and worse indicators of lung function. The double-exposed individuals were worse off in all the evaluated parameters, and they were significantly worse than subjects with single exposure to household air pollution in relation to asthma severity and lung function. These subjects were predominantly females, older, with longer residence time in rural areas, lower income and lower schooling levels. Multivariate analysis showed that exposure to household pollution and double exposure were predictive factors associated with lack of control and increased severity of asthma.ConclusionsExposure to household pollution is associated with poorer control, greater severity, and poorer pulmonary function; double-exposed individuals have a greater risk of severe asthma and decreased lung function than those exposed only to household pollution.
Objective: To determine the frequency of active smoking among patients with asthma and individuals without asthma by self-report and urinary cotinine measurement. Methods: This was a cross-sectional study conducted in the city of Salvador, Brazil, and involving 1,341 individuals: 498 patients with severe asthma, 417 patients with mild-to-moderate asthma, and 426 individuals without asthma. Smoking status was determined by self-report (with the use of standardized questionnaires) and urinary cotinine measurement. The study variables were compared with the chi-square test and the Kruskal-Wallis test. Results: Of the sample as a whole, 55 (4.1%) reported being current smokers. Of those, 5 had severe asthma, 17 had mild-to-moderate asthma, and 33 had no asthma diagnosis. Of the 55 smokers, 32 (58.2%) were daily smokers and 23 (41.8%) were occasional smokers. Urinary cotinine levels were found to be high in self-reported nonsmokers and former smokers, especially among severe asthma patients, a finding that suggests patient nondisclosure of smoking status. Among smokers, a longer smoking history was found in patients with severe asthma when compared with those with mild-to-moderate asthma. In addition, the proportion of former smokers was higher among patients with severe asthma than among those with mild-to-moderate asthma. Conclusions: Former smoking is associated with severe asthma. Current smoking is observed in patients with severe asthma, and patient nondisclosure of smoking status occurs in some cases. Patients with severe asthma should be thoroughly screened for smoking, and findings should be complemented by objective testing.
Objective: To estimate the frequency of secondhand smoke exposure among patients with asthma. Methods: A cross-sectional study of asthma patients and non-asthmatic controls using questionnaires to identify secondhand smoke exposure at home, school, work, and public places. Results: We studied 544 severe asthma patients, 452 mild/moderate asthma patients, and 454 non-asthmatic patients. Among severe patients, the mean age was 51.9 years, 444 (81.6%) were female, 74 (13.6%) were living with a smoker, 383 (71.9%) reported exposure in public spaces and, of the 242 (44.5%) who worked/ studied, 46 (19.1%) reported occupational exposure. Among those with mild/moderate asthma, the mean age was 36.8 years, 351 (77.7%) were female, 50 (11.1%) reported living with a smoker, 381 (84.9%) reported exposure in public settings and, of the 330 (73.0%) who worked/ studied, 58 (17.7%) reported occupational exposure. An association between secondhand smoke exposure and disease control was found among patients with mild/moderate asthma. Among those interviewed, 71% of severe asthma patients and 63% of mild/moderate asthma patients avoided certain places due to fear of secondhand smoke exposure. Conclusion: Secondhand smoke exposure is a situation frequently reported by a significant proportion of asthma patients. Individuals with asthma are exposed to this agent, which can hamper disease control, exacerbate symptoms and pose unacceptable limitations to their right to come and go in public settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.