Although exhibiting limited genetic polymorphism, the very large genome of H. vastatrix (c. 797 Mbp) conceals great pathological diversity, with more than 50 physiological races. Gene expression studies have revealed a very precocious activation of signalling pathways and production of putative effectors, suggesting that the plant-fungus dialogue starts as early as at the germ tube stage, and have provided clues for the identification of avr genes.
Coffee (Coffea arabica L.), one of the key export and cash crops in tropical and subtropical countries, suffers severe losses from the rust fungus Hemileia vastatrix. The transcriptome of H. vastatrix was analysed during a compatible interaction with coffee to obtain an exhaustive repertoire of the genes expressed during infection and to identify potential effector genes. Large-scale sequencing (454-GS-FLEX Titanium) of mixed coffee and rust cDNAs obtained from 21-day rust-infected leaves generated 352 146 sequences which assembled into 22 774 contigs. In the absence of any reference genomic sequences for Coffea or Hemileia, specific trinucleotide frequencies within expressed sequence tags (ESTs) and blast homology against a set of dicots and basidiomycete genomes were used to distinguish pathogen from plant sequences. About 30% (6763) of the contigs were assigned to H. vastatrix and 61% (13 951) to C. arabica. The majority (60%) of the rust sequences did not show homology to any genomic database, indicating that they were potential novel fungal genes. In silico analyses of the 6763 H. vastatrix contigs predicted 382 secreted proteins and identified homologues of the flax rust haustorially expressed secreted proteins (HESPs) and bean rust transferred protein 1 (RTP1). These rust candidate effectors showed conserved amino-acid domains and conserved patterns of cysteine positions suggestive of conserved functions during infection of host plants. Quantitative reverse transcription-polymerase chain reaction profiling of selected rust genes revealed dynamic expression patterns during the time course of infection of coffee leaves. This study provides the first valuable genomic resource for the agriculturally important plant pathogen H. vastatrix and the first comprehensive C. arabica EST dataset.
Ecological speciation through host-shift has been proposed as a major route for the appearance of novel fungal pathogens. The growing awareness of their negative impact on global economies and public health created an enormous interest in identifying the factors that are most likely to promote their emergence in nature. In this work, a combination of pathological, molecular and geographical data was used to investigate the recent emergence of the fungus Colletotrichum kahawae. C. kahawae emerged as a specialist pathogen causing coffee berry disease in Coffea arabica, owing to its unparalleled adaptation of infecting green coffee berries. Contrary to current hypotheses, our results suggest that a recent host-jump underlay the speciation of C. kahawae from a generalist group of fungi seemingly harmless to coffee berries. We posit that immigrant inviability and a predominantly asexual behaviour could have been instrumental in driving speciation by creating pleiotropic interactions between local adaptation and reproductive patterns. Moreover, we estimate that C. kahawae began its diversification at <2200 bp leaving a very short time frame since the divergence from its sibling lineage (c. 5600 bp), during which a severe drop in C. kahawae's effective population size occurred. This further supports a scenario of recent introduction and subsequent adaptation to C. arabica. Phylogeographical data revealed low levels of genetic polymorphism but provided the first geographically consistent population structure of C. kahawae, inferring the Angolan population as the most ancestral and the East African populations as the most recently derived. Altogether, these results highlight the significant role of host specialization and asexuality in the emergence of fungal pathogens through ecological speciation.
Olive production systems, harvest and post-harvest processing have experienced profound changes in recent years, namely new training systems using specific cultivars, new harvest and processing techniques and new organoleptic market requests. Changes are also occurring in both the geographical distribution of pathogen populations and the taxonomic framework. In addition, stricter rules concerning pesticide use are likely to have a strong impact on control strategies. A detailed knowledge of pathogen diversity, population dynamics and host-pathogen interactions is basal for the deployment of durable and effective disease control strategies, whether based on resistance breeding, agronomic practices or biological or chemical control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.