The chemical composition and the surface characteristics of dental implants are factors that have a decisive effect on the osseointegration process. The surface characterization at the compositional and topographic level of three dental implants available in the market was performed with different surface treatments: (1) sandblasted and acid etched surface (SLA), (2) hydroxyapatite (HA) and tricalcium phosphate (TCP) blasted surface (HA/TCP), and (3) HA-blasted and non-etching acid washed surface (HA + AW). In addition, an in vitro viability study of MG-63 osteoblast cells was performed with a JC-1 test. To complete the study, an in vivo study was conducted in New Zealand rabbits. The study analyzed the histometric characteristics of the bone formed around the implants at the level of area, volume, bone density, accumulated bone density, and bone–implant contact (BIC). The rabbits were sacrificed at 6 weeks after implants were placed in the tibial metaphysis. No statistically significant differences were observed at the level of cell viability or histometric parameters between the different study groups (p > 0.05). SLA and HA/TCP surfaces were the ones that obtained a higher BIC value. Taking into account the limitations of this study, it can be concluded that the different implant surfaces analyzed favor a good bone response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.