The present work deals with the dilatometric study of a hot-rolled 0.2C3Mn1.5Si lean medium Mn steel, mainly suitable for the quenching and partitioning (Q&P) heat treatment in both hot-rolled or cold-rolled condition, subjected to a variation of austenitization temperature. These investigations were performed in a temperature range of 800–1200 °C. In this context, the martensite transformation start temperature (Ms) was determined as a function of austenitization temperature and in turn obtained prior austenite grain size (PAGS). The results show rise in prior austenite grain size due to increasing austenitization temperature, resulting in elevated Ms temperatures. Measured dilatation curves were confronted with the metallographic analysis by means of scanning electron microscopy (SEM). The present paper also focuses on the construction of a continuous cooling transformation (CCT) and deformation continuous cooling transformation (DCCT) diagram of the investigated lean medium Mn steel in a range of cooling rates from 100 to 0.01 °C/s and their subsequent comparison. By comparing these two diagrams, we observed an overall shift of the DCCT diagram to shorter times compared to the CCT diagram, which represents an earlier formation of phase transformations with respect to the individual cooling rates. Moreover, the determination of individual phase fractions in the CCT and DCCT mode revealed that the growth stage of ferrite and bainite is decelerated by deformation, especially for intermediate cooling rates. Microstructural changes corresponding to cooling were also observed using SEM to provide more detailed investigation of the structure and present phases identification as a function of cooling rate. Moreover, the volume fractions obtained from the saturation magnetization method (SMM) are compared with data from X-ray diffraction (XRD) measurements. The discussion of the data suggests that magnetization measurements lead to more reliable results and a more sensitive detection of the retained austenite than XRD measurements. In that regard, the volume fraction of retained austenite increased with a decrease of cooling rate as a result of larger volume fraction of ferrite and bainite. The hardness of the samples subjected to the deformation was slightly higher compared to non-deformed samples. The reason for this was an evident grain refinement after deformation.
The main aim of this article is study the cause of gear wheel failure. This component has worked in the motorcycle gearbox. During the operation of the transmission, the gear wheel tooth was broken, which made it impossible to continue running this device. The investigation of the damaged area was focused on determining the chemical composition of the inclusions which are present of gear wheel material as well as detecting changes of material contrast in microlocalities close to the defective areas. The method of energy-dispersive spectroscopy and scnanning electron microscopy were chosen for this type of analysis. Furthermore, the micropurity and microstructure of the material were evaluated by methods of optical microscopy and scanning electron microscopy. Using a thermo-emission scanning electron microscope, the microcrack area was evaluated in the mode of secondary electrons and also in the mode of backscattered electrons. In this way, the fracture surface was examined in terms of its micromorphology as well as material contrast.
The present paper deals with a targeted modification of two kinds of alternative additives - waste from glass production and natural mineral filler and explores their effect on the properties of polymeric materials. In the function of first alternative filler was used sludge from weighing the ingredients of glass batch in the glass production. The second used was natural aluminosilicate material based on zeolite (clinoptilolite). These alternative fillers have been modified in order to increase its efficiency, using the silanes: 3-aminopropyl-triethoxysilane, bis(triethoxysilyl)propyl-tetrasulfide and 3-(triethoxysilyl)propyl-methacrylate. In the case of alternative filler based on zeolite the influence of silanization conditions on the filler efficiency have been also studied. Prepared modified fillers were mixed into rubber compounds as partial replacement of commonly used filler – carbon black. The influence of prepared fillers on rheology and curing characteristics of rubber compounds and also on physical and mechanical properties of vulcanizates has been studied. Obtained results of measured characteristics of polymeric systems containing prepared alternative fillers were compared with the results obtained in the case of reference rubber compound with a commertially used filler – carbon black.
High-strength screws represent one of the main joining or fastening components which are commonly used in the process of installation of frame constructions for information boards or signposts, relating to the traffic roads. The control of the production process may not always be a sufficient method for ensuring road safety. The backward investigation and control of the screw material processing seems to be the one of the most important procedures when there is the occurrence of any failure during the operation of the screw. This paper is mainly focused on the analysis of the failure of the high-strength screw of 10.9 grade with M diameter of 27 × 3 and a shank length of 64 mm. The mentioned and investigated screw was used as a fastener in a highway frame construction. In the paper, there is mainly the analysis of the material for a broken screw in terms of the material micropurity, the material microstructure, the surface treatment as well as chemical composition. The evaluation was based on investigation by optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. Important knowledge and results were also obtained due to information on micromorphology and material contrast of the fracture surface resulting from fractographic analysis, using the method of scanning electron microscopy. In the case of the production of the high-strength screws, the tempering stands for the decisive or crucial process of heat treatment because the given process can ensure a decrease in hardness, while the required ductile properties of the material are kept and this is also reflected in the increase of strength and micromorphology of the fracture surface. From the aspect of micropurity, inclusions of critical size or distribution were not identified in the material, referring to Czech standard ČSN ISO 4967 (420471). The microstructure corresponds to tempered martensite, but the fracture surface of the broken screw was based on an intercrystalline micromechanism, which is undesirable for the given type of component. Combined with the measurement of the HV1 (Vickers hardness at a load of 1 kg) from the edge to the central area of the screw, the analysis revealed the significant drawbacks in the heat treatment of the high-strength screw.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.