Purpose: Poly(methyl methacrylate) (PMMA) is the most commonly used material in the production of dental prostheses, and its application is often accompanied by the formation of biofilm. The aim of this work was the preparation of a PMMA/gold nanoparticles (AuNps) composite to improve the antimicrobial properties of heat-polymerised PMMA. The AuNPs were synthesised from gold (III) acetate by Ultrasonic Spray Pyrolysis (USP). In the present study, flexural strength and elastic modulus were investigated, as well as thermal conductivity, density and hardness of the PMMA/ AuNps` nanocomposite, with different concentrations of AuNps. Flexural strength and elastic modulus were measured using a three-point bending test, and surface hardness was evaluated using the Vickers hardness test. The thermal conductivity of the samples was measured using the Transient Plane Source (TPS) technique. Density was determined by the pycnometry procedure. Statistical analysis was conducted on the data obtained from the experiments. Results: The flexural strength and elastic modulus of AuNps/PMMA nanocomposites decreased for all groups containing AuNps. Thermal conductivity and density increased in all groups containing AuNps compared to the control group, but it was not significant in all groups. Vickers hardness values increased significantly with an increase in AuNps` content, with the highest value 21.45 HV obtained at 0.74 wt% of AuNps. Statistical analysis was performed by means of the SPSS 19 software package. Conclusions: Incorporation of AuNps into heat-polymerised PMMA resin led to decrease of the flexural strength and elastic modulus. At the same time, the density, thermal conductivity and hardness increased.
A green superhydrophobic hybridization concept that incorporates biomimetics (lotus effect), chemistry (siloxane and silane admixtures), and nanotechnology (hydrophobic coating with SiO2 nanoparticles) is used to produce superhydrophobic concrete. The fabricated samples exhibit superior hydrophobicity, contact angles (CA) up to 157.6° ± 3.1°, and roll‐off angles (RO) of 6.5° ± 1.5°, even under high surface mechanical abrasion. The superhydrophobic samples can decrease freeze‐thaw damage and maintain high freeze‐thaw resistance effectively. The modified surfaces exhibit 6 times lower deicing strength compared with the reference surfaces. Furthermore, the high water repellency helps to prevent corrosive liquids from encountering the concrete reinforcement samples and helps to improve the corrosion resistance of steel bars. These unique key properties and self‐cleaning capability make superhydrophobic concrete relevant for a wide range of commercial and practical engineering applications in construction, bridges, and transportation.
Mineral wool made from basalt fibers is frequently used as an insulating material in construction systems. In this study, both unused mineral wool and wool obtained from the softened roofing area were comprehensively analyzed in a laboratory using different characterization techniques. Firstly, the initial water content and compressive strength at 10% deformation were determined. Secondly, microstructure and surface chemical composition were analyzed by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). To study heterogeneities near the fiber surface and to examine cross-sectional composition, a scanning transmission electron microscope (STEM) was used. Finally, to verify possible reasons for resin degradation, thermogravimetric analysis and differential scanning colometry (TGA-DSC) were simultaneously carried out. The results show that natural aging under high humidity and thermal fluctuations greatly affected the surface morphology and chemical composition of the fibrous composite. Phenol-formaldehyde and other hydrophobic compounds that protect fibers against moisture and give compressive resistance were found to be degraded.
Colloidal gold nanoparticles (AuNPs) were prepared from two different liquid precursors (gold (III) acetate and gold (III) chloride), using the Ultrasonic Spray Pyrolysis (USP) process. The STEM characterisation showed that the AuNPs from gold chloride are spherical, with average diameters of 57.2 and 69.4 nm, while the AuNPs from gold acetate are ellipsoidal, with average diameters of 84.2 and 134.3 nm, according to Dynamic Light Scattering (DLS) measurements. UV/VIS spectroscopy revealed the maximum absorbance band of AuNPs between 532 and 560 nm, which indicates a stable state. Colloidal AuNPs were used as starting material and were mixed together with acrylic acid (AA) and acrylamide (Am) for the free radical polymerization of polyacrylate-AuNPs’ composites, with the purpose of using them for temporary cavity fillings in the dental industry. SEM characterisation of polyacrylate-AuNPs’ composites revealed a uniform distribution of AuNPs through the polymer matrix, revealing that the AuNPs remained stable during the polymerization process. The density measurements revealed that colloidal AuNPs increase the densities of the prepared polyacrylate-AuNPs’ composites; the densities were increased up to 40% in comparison with the densities of the control samples. A compressive test showed that polyacrylate-AuNPs’ composites exhibited lower compressive strength compared to the control samples, while their toughness increased. At 50% compression deformation some of the samples fracture, suggesting that incorporation of colloidal AuNPs do not improve their compressive strength, but increase their toughness significantly. This increased toughness is the measured property which makes prepared polyacrylate-AuNPs potentially useful in dentistry.
Delayed ettringite formation (DEF) is a chemical reaction with proven damaging effects on the mechanical properties of hydrated cementitious composite (concrete). Ettringite crystals can cause cracks and the widening of cracks due to pressure on the crack walls caused by the positive volume difference in the reaction. In this paper, we investigated the potential to utilise the positive volume difference in DEF in order to improve the mechanical properties of hydrated fine grained aerated concrete. Fine dispersed crystallisation nuclei, achieved by adding air-entraining agent (AEA) and by short vibration of specimens, are presented as the main requirement for such improvements. Control tests of expansion and mechanical properties were performed on samples of concrete with and without AEA by inducing DEF. The microstructure of fine grained aerated concrete was examined with an optical microscope and scanning electron microscope. We found that the controlled DEF, which is guaranteed by adding AEA and with the formation of uniformly dispersed air bubbles, which are crystallisation sites for ettringite crystals, improves the mechanical properties. The specimens with induced DEF were measured and found to have a 6.8% increase of compressive strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.