Accurate monitoring of sugar levels is essential for many fields from food industry to human health. Here, we developed FRET-based dual chromophore sensors for saccharides that form oxazolidine boronate and may be employed as a noninvasive method for monitoring of sugar levels in biological fluids, namely, urine. The saccharide-binding properties of the sensors were studied using fluorescence spectroscopy and utilized in the determination of saccharides in a high-throughput manner.Here, two fluorescent sensors were successful in the classification of nine different monosaccharides and disaccharides with 100% correct classification. Furthermore, the dual chromophore self-assembled sensors were successfully utilized for the quantitative determination of important carbohydrates such as glucose in the presence of competitive saccharides (fructose) and in complex media (urine) without sample pretreatment. The present fluorescent sensors allow for quantification of glucose in a concentration range of 0−60 mM, which matches the concentration range of frequently used urinalysis test strips.
The presence of electron rich compounds such as amines added to the fluorescent methoxybinaphthalene boronic acid results in a dramatic increase in affinity of diols to the aryl boronic acid as well as in the augmented fluorescence response. This is likely the result of the change in boron geometry upon coordination with electron donor which facilitate the diols binding. Here, we demonstrate the role of amino alcohol additive in binding of saccharides by boronic acid‐based fluorescent sensor. We show that this strategy allows a poorly responsive sensor to become a highly sensitive probe for the detection of sugars, which could be used for classification of saccharides as well as for quantitative analysis in DMSO‐water solutions. The simple binaphthalene boronic acid sensor was particularly sensitive to d‐fructose (Ka=2.08×106), which allowed for identification of commercial sweetened beverages based on their d‐fructose content. The same method was successfully used for the quantitative analysis of d‐fructose in soft beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.