Prototheca microalgae were only recognized as pathogens of both humans and animals in the 1960s; however, since then, these microbes have been drawing increasing interest in both human and veterinary medicine. The first human outbreak of protothecosis in a tertiary care chemotherapy ward in 2018 further highlighted the need to understand in more depth and detail their ecology, etiology, pathogenesis and routes of transmission between different hosts, environments and habitats from a One Health perspective. Protothecal infections have been reported in a growing number of cattle herds around the world in recent decades, and Prototheca has become an important bovine mastitis pathogen in certain countries and regions. The survival of Prototheca in the environment and its ability to spread in the herd pose a serious challenge to the management of infected dairy farms. Prevention of the disease is particularly important, as there is no effective and reliable treatment for it and the chances of self-healing are minimal. Therefore, the development of more effective drugs is needed for the treatment of human and animal protothecosis. The prudent use of antibiotics and their replacement by alternative or preventive measures, when possible, may further contribute to the control of protothecal infections.
Background
Echinocandin resistance represents a great concern, as these drugs are recommended as first-line therapy for invasive candidiasis. Echinocandin resistance is conferred by mutations in FKS genes. Nevertheless, pathways are crucial for enabling tolerance, evolution, and maintenance of resistance. Therefore, understanding the biological processes and proteins involved in the response to caspofungin may provide clues indicating new therapeutic targets.
Objectives
We determined the resistance mechanism and assessed the proteome response to caspofungin exposure. We then evaluated the phenotypic impact of calcineurin inhibition by FK506 and cephalosporine A (CsA) on caspofungin-resistant Candida glabrata isolates.
Methods
Twenty-five genes associated with caspofungin resistance were analysed by NGS, followed by studies of the quantitative proteomic response to caspofungin exposure. Then, susceptibility testing of caspofungin in presence of FK506 and CsA was performed. The effects of calcineurin inhibitor/caspofungin combinations on heat stress (40°C), oxidative stress (0.2 and 0.4 mM menadione) and on biofilm formation (polyurethane catheter) were analysed. Finally, a Galleria mellonella model using blastospores (1 × 109 cfu/mL) was developed to evaluate the impact of the combinations on larval survival.
Results
F659-del was found in the FKS2 gene of resistant strains. Proteomics data showed some up-regulated proteins are involved in cell-wall biosynthesis, response to stress and pathogenesis, some of them being members of calmodulin–calcineurin pathway. Therefore, the impact of calmodulin inhibition was explored. Calmodulin inhibition restored caspofungin susceptibility, decreased capacity to respond to stress conditions, and reduced biofilm formation and in vivo pathogenicity.
Conclusions
Our findings confirm that calmodulin-calcineurin-Crz1 could provide a relevant target in life-threatening invasive candidiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.