We study holomorphic foliations tangent to singular real-analytic Levi-flat hypersurfaces in compact complex manifolds of complex dimension two. We give some hypotheses to guarantee the existence of dicritical singularities of these objects. As consequence, we give some applications to holomorphic foliations tangent to real-analytic Levi-flat hypersurfaces with singularities in P 2 .2010 Mathematics Subject Classification. Primary 32V40 -32S65.
The aim of this work is to study global 3-webs with vanishing curvature. We wish to investigate degree 3 foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree 3 foliations whose Legendre transform are webs with zero curvature. R ÉSUM É. Le but de ce travail est d'étudier les 3-tissus globaux de courbure nulle. En particulier, nous nous intéressons aux feuilletages de degré 3 dont le tissu dual est plat. L'ingrédient principal est la transformée de Legendre, qui est un avatar de la dualité projective classique dans le domaine des équations différentielles. Nous obtenons une caractérisation des feuilletages de degré 3 sur le plan projectif dont les tissus duaux sont de courbure nulle.
En este artículo se presentan algunos aspectos sobre el problema de existencia en matemáticas, tomando como referencia el infinito actual. En primer lugar se describe las concepciones de los antiguos sobre el infinito y los argumentos aristotélicos para negar la existencia del infinito actual. En seguida se describe la incorporación del infinito actual a las matemáticas establecido por Georg Cantor entre 1880 y 1896. A continuación se aborda el problema de la existencia en matemáticas planteado por los matemáticos franceses Borel, Baire y Lebesgue. A partir del problema de la existencia efectiva en cada uno de los niveles de Baire, se describen las cuatro categorías existenciales, planteadas por el matemático ruso Nicolás Lusin; luego se analiza la posición de Lusin en términos de la teoría de la “tematización”, introducida por Jean Cavaillès y Jean-Louis Gardies. Al final se argumenta la necesidad de establecer una filosofía de las matemáticas desde el interior mismo de las matemáticas.
We introduce the notion of Galois holomorphic foliation on the complex projective space as that of foliations whose Gauss map is a Galois covering when restricted to an appropriate Zariski open subset. First, we establish general criteria assuring that a rational map between projective manifolds of the same dimension defines a Galois covering. Then, these criteria are used to give a geometric characterization of Galois foliations in terms of their inflection divisor and their singularities. We also characterize Galois foliations on P 2 admitting continuous symmetries, obtaining a complete classification of Galois homogeneous foliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.