We study holomorphic foliations tangent to singular real-analytic Levi-flat hypersurfaces in compact complex manifolds of complex dimension two. We give some hypotheses to guarantee the existence of dicritical singularities of these objects. As consequence, we give some applications to holomorphic foliations tangent to real-analytic Levi-flat hypersurfaces with singularities in P 2 .2010 Mathematics Subject Classification. Primary 32V40 -32S65.
We study in this paper several properties concerning singularities of foliations in (C 3 , 0) that are pull-back of dicritical foliations in (C 2 , 0). Particularly, we will investigate the existence of first integrals (holomorphic and meromorphic) and the dicriticalness of such a foliation. In the study of meromorphic first integrals we follow the same method used by R. Meziani and P. Sad in dimension two. While the foliations we study are pull-back of foliations in (C 2 , 0), the adaptations are not straightforward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.