The achievement of international goals and national commitments related to forest conservation and management, climate change, and sustainable development requires credible, accurate, and reliable monitoring of stocks and changes in forest biomass and carbon. Most prominently, the Paris Agreement on Climate Change and the United Nations' Sustainable Development Goals in particular require data on biomass to monitor progress. Unprecedented opportunities to provide forest biomass data are created by a series of upcoming space-based missions, many of which provide open data targeted at large areas and better spatial resolution biomass monitoring than has previously been achieved. We assess various policy needs for biomass data and recommend a long-term collaborative effort among forest biomass data producers and users to meet these needs. A gap remains, however, between what can be achieved in the research domain and what is required to support policy making and meet reporting requirements. There is no single biomass dataset that serves all users in terms of definition and type of biomass measurement, geographic area, and uncertainty requirements, and whether there is need for the most recent up-to-date biomass estimate or a long-term biomass trend. The research and user communities should embrace the potential strength of the multitude of upcoming missions in combination to provide for these varying needs and to ensure continuity for long-term data provision which one-off research missions cannot provide. International coordination bodies such as Global Forest Observations Initiative (GFOI), Committee on Earth Observation Satellites (CEOS), and Global Observation of Forest Cover and Land Dynamics (GOFC-GOLD) will be integral in addressing these issues in a way that fulfils these needs in a timely fashion. Further coordination work should particularly look into how space-based data can be better linked with field reference data sources such as forest plot networks, and there is also a need to ensure that reference data cover a range of forest types, management regimes, and disturbance regimes worldwide.
Reductions in atmospheric concentrations of greenhouse gases are urgently needed to avoid the most catastrophic consequences of warming. Reducing deforestation and forest degradation presents a climate change mitigation opportunity critical to meeting Paris Agreement goals. One strategy for decreasing carbon emissions from forests is to provide developing countries with results-based financial incentives for reducing deforestation: nearly two billion dollars are currently committed to finance such programs, referred to as REDD+ (Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management of forests, and enhancement of forest carbon stocks). Countries participating in these programs must document the uncertainty in their estimates of emissions and emission reductions, and payments are reduced if uncertainties are high. Our examination of documentation submitted to date to the United Nations Framework Convention on Climate Change (UNFCCC) and the Forest Carbon Partnership Facility (FCPF) reveals that uncertainties are commonly underestimated, both by omitting important sources of uncertainty and by incorrectly combining uncertainties. Here, we offer recommendations for addressing common problems in estimating uncertainty in emissions and emission reductions. Better uncertainty estimates will enable countries to improve forest carbon accounting, contribute to better informed forest management, and support efforts to track global greenhouse gas emissions. It will also strengthen confidence in markets for climate mitigation efforts. Demand by companies for nature-based carbon credits is growing and if such credits are used for offsets, in exchange for fossil fuel emissions, it is essential that they represent accurately quantified emissions reductions.
REDD+ implementation requires robust, consistent, accurate and transparent national land cover historical data and monitoring systems. Satellite imagery is the only data source with enough periodicity to provide consistent land cover information in a cost-effective way. The main aim of this paper is the creation of an operational framework for monitoring land cover dynamics based on Landsat imagery and open-source software. The methodology integrates the entire land cover and land cover change mapping processes to produce a consistent series of Land Cover maps. The consistency of the time series is achieved through the application of a single trained machine learning algorithm to radiometrically normalized imagery using iteratively re-weighted multivariate alteration detection (IR-MAD) across all dates of the historical period. As a result, seven individual Land Cover maps of Costa Rica were produced from 1985/1986 to 2013/2014. Post-classification land cover change detection was performed to evaluate the land cover dynamics in Costa Rica. The validation of the land cover maps showed an overall accuracy of 87% for the 2013/2014 map, 93% for the 2000/2001 map and 89% for the 1985/1986 map. Land cover changes between forest and non-forest classes were validated for the period between 2001 and 2011, obtaining an overall accuracy of 86%. Forest age-classes were generated through a multi-temporal analysis of the maps. By linking deforestation dynamics with forest age, a more accurate discussion of the carbon emissions along the time series can be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.