Reductions in atmospheric concentrations of greenhouse gases are urgently needed to avoid the most catastrophic consequences of warming. Reducing deforestation and forest degradation presents a climate change mitigation opportunity critical to meeting Paris Agreement goals. One strategy for decreasing carbon emissions from forests is to provide developing countries with results-based financial incentives for reducing deforestation: nearly two billion dollars are currently committed to finance such programs, referred to as REDD+ (Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management of forests, and enhancement of forest carbon stocks). Countries participating in these programs must document the uncertainty in their estimates of emissions and emission reductions, and payments are reduced if uncertainties are high. Our examination of documentation submitted to date to the United Nations Framework Convention on Climate Change (UNFCCC) and the Forest Carbon Partnership Facility (FCPF) reveals that uncertainties are commonly underestimated, both by omitting important sources of uncertainty and by incorrectly combining uncertainties. Here, we offer recommendations for addressing common problems in estimating uncertainty in emissions and emission reductions. Better uncertainty estimates will enable countries to improve forest carbon accounting, contribute to better informed forest management, and support efforts to track global greenhouse gas emissions. It will also strengthen confidence in markets for climate mitigation efforts. Demand by companies for nature-based carbon credits is growing and if such credits are used for offsets, in exchange for fossil fuel emissions, it is essential that they represent accurately quantified emissions reductions.
This article discusses the importance of quality deforestation area estimates for reliable and credible REDD+ monitoring and reporting. It discusses how countries can make use of global spatial tree cover change assessments, but how considerable additional efforts are required to translate these into national deforestation estimates. The article illustrates the relevance of countries’ continued efforts on improving data quality for REDD+ monitoring by looking at Mexico, Cambodia, and Ghana. The experience in these countries show differences between deforestation areas assessed directly from maps and improved sample-based deforestation area estimates, highlighting significant changes in both magnitude and trend of assessed deforestation from both methods. Forests play an important role in achieving the goals of the Paris Agreement, and therefore the ability of countries to accurately measure greenhouse gases from forests is critical. Continued efforts by countries are needed to produce credible and reliable data. Supporting countries to continually increase the quality of deforestation area estimates will also support more efficient allocation of finance that rewards REDD+ results-based payments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.