The software-defined networking (SDN) paradigm proposes the decoupling of control and data planes and a centralized software-oriented management approach based on a central controller, easing the development of new applications and services. These design principles pave the way for a more flexible, fast, and dynamic software-controlled network. However, in terms of security, the elements that comprise the SDN architecture present several vulnerabilities, which could be exploited by attackers to carry out malicious actions and thus affect the network and its services. Although for several years, some studies have already focused on identifying the weaknesses of the SDN layer structure, the nature of the attacks, and possible solutions for this paradigm, the literature contains few contributions that review and discuss this topic in an integral fashion. This paper provides a comprehensive, updated, and detailed review of the main security issues and mitigating measures for all layers and interfaces of the SDN architecture, classifying the contributions according to the STRIDE threat modeling methodology categories. Finally, this manuscript identifies, discusses, and synthesizes open challenges and future research directions in this area.
Network slicing is a key element in 5G networks. It allows a mobile network operator (MNO) to offer multiple logical networks tailored to the requirements of different industry verticals over a shared infrastructure. From the point of view of an MNO, a mobile virtual network operator (MVNO) is a particular type of vertical network requiring not only the provision of logical networks with specific infrastructure resources but also customized management capabilities to allow the MVNO to offer network slice-based services to its clients over the infrastructure of multiple MNOs. However, the lack of flexibility to provide a customized and efficient network slice management system per tenant under the current proposals of the 3rd Generation Partnership Project (3GPP) and European Telecommunications Standards Institute (ETSI) limits the possibilities of MVNOs. This paper addresses this requirement by proposing a novel virtualized multidomain and multiclient orchestration system aligned with the functionalities of the network slicing management framework proposed by the 3GPP and ETSI. In particular, there are three contributions of this paper: (i) an extended service-based architecture is designed to provide an isolated management system to different MVNOs; (ii) a novel high-level slice instance template is defined to specify management and isolation requirements supporting network slicing as a service model; and (iii) finally, a teleoperated driving use case is described to showcase how our proposal provides an MVNO with an independent management system to orchestrate several network slices in cross-domain environments.
Residential networks play a critical role in assuring that services or applications such as tele-work, tele-education, medical care, entertainment, home automation, among others, have the required resources to obtain an optimal performance. Although current residential gateways try to meet the Quality of Service (QoS) demands, the traditional networking paradigm does not have the appropriate mechanisms to address the heterogeneous and dynamic nature of the services running at home. In this context, a feasible solution consists of leveraging the flexibility and adaptability of the Software Defined Networking (SDN) and Network Functions Virtualization (NFV) paradigms to provide a differentiated traffic treatment intended to improve the QoS support of residential networks. The proposal takes advantage of the Service Function Chaining (SFC) concept intrinsic to NFV as well as the capacity of an SDN-based residential gateway to differentiate the traffic of a certain application. Thus, an association between an SFC and the differentiated traffic is stablished to apply a specific treatment. Besides, a comprehensive architecture composed of the software defined residential network (SDRN), the software defined access network (SDOAN) and the NFV-compliant ISP's edge cloud infrastructure is envisioned. This architecture would allow dramatically improving the life cycle management of the residential network from a centralized point which follows a user-centric approach. INDEX TERMS Software defined networks, network functions virtualization, quality of service, service function chaining, residential network management applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.