As the world enters its second year of the pandemic caused by SARS-CoV-2, intense efforts have been directed to develop an effective diagnosis, prevention, and treatment strategies. One promising drug target to design COVID-19 treatments is the SARS-CoV-2 Mpro. To date, a comparative understanding of Mpro dynamic stereoelectronic interactions with either covalent or non-covalent inhibitors (depending on their interaction with a pocket called S1’ or oxyanion hole) has not been still achieved. In this study, we seek to fill this knowledge gap using a cascade in silico protocol of docking, molecular dynamics simulations, and MM/PBSA in order to elucidate pharmacophore models for both types of inhibitors. After docking and MD analysis, a set of complex-based pharmacophore models was elucidated for covalent and non-covalent categories making use of the residue bonding point feature. The highest ranked models exhibited ROC-AUC values of 0.93 and 0.73, respectively for each category. Interestingly, we observed that the active site region of Mpro protein–ligand complex undergoes large conformational changes, especially within the S2 and S4 subsites. The results reported in this article may be helpful in virtual screening (VS) campaigns to guide the design and discovery of novel small-molecule therapeutic agents against SARS-CoV-2 Mpro protein.
The ligand efficiency (LE) indexes have long been used as decision-making criteria in drug discovery and development. However, in the context of fragment-based drug design (FBDD), these metrics often exhibit a strong emphasis toward the selection of highly efficient “core” fragments for potential optimization, which are not usually considered as parts of a larger molecule with a size typical for a drug. In this study, we present a relative group contribution (RGC) model intended to predict the efficiency of a drug-sized compound in terms of its component fragments. This model could be useful not only in rapidly predicting all the possible combinations of promising fragments from an earlier hit discovery stage, but also in enabling a relatively low-LE fragment to become part of a drug-sized compound as long as it is “rescued” by other high-LE fragments.
Currently, billions of nucleotide and amino acid sequences accumulate in free-access databases as a result of the omics revolution, the improvement in sequencing technologies, and the systematic storage of shotgun sequencing data from a large and diverse number of organisms. In this chapter, multi-omics data mining approaches will be discussed as a novel tool for the identification and characterization of novel DNA sequences encoding elementary parts of complex biological systems (BioBricks) using omics libraries. Multi-omics data mining opens up the possibility to identify novel unknown sequences from free-access databases. It also provides an excellent platform for the identification and design of novel BioBricks by using previously well-characterized biological bricks as scaffolds for homology searching and BioBrick design. In this chapter, the most recent mining approaches will be discussed, and several examples will be presented to highlight its relevance as a novel tool for synthetic biology.
Antifolates such as methotrexate (MTX) have been largely known as anticancer agents because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human dihydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven ineffective against melanoma, and, therefore, inhibitors with a non-classical lipophilic structure are increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study, we conducted a protocol combining virtual screening (VS) and cell-based assays to identify new potential non-classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68; average MW = 378.34 Da), two—herein, called C1 and C2—exhibited activity against melanoma cell lines B16 and A375 by MTT and Trypan-Blue assays. C1 showed cell growth arrest (39% and 56%) and C2 showed potent cytotoxic activity (77% and 51%) in a dose-dependent manner. The effects of C2 on A375 cell viability were greater than MTX (98% vs 60%) at equivalent concentrations and times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to identify novel promising non-classical DHFR inhibitors showing activity against melanoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.