The short average service life of traditional dental composite restorative materials and increasing occurrence of secondary caries adjacent to composite restorations and sealants are necessitating the development of new, longer lasting compositions. Novel monomers and their polymers, reinforcing fillers, and adhesive components are needed. The goal of this research is to develop resin systems for use in restorations, sealants, and other dental services that are superior in properties and endurance to currently used bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) and urethane–dimethacrylate products. Ether-based monomers and their polymers that were not susceptible to enzymatic or hydrolytic degradation were prepared and characterized. They showed no degradation under hydrolytic and enzymatic challenges, whereas the hydrolysis of ester links weakened contemporary resins within 16 days under these challenges. The success of the ether-based materials is promising in making durable systems that are subjected to long-term biochemical and hydrolytic challenges in oral environments.
A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ~100 nm liposomes containing these constructs in ≥90 mol% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of timescales as a function of the electronic properties of the vinyl ether linkage, the solution pH and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using 125I-tyraminylinulin as a label. The pharmacokinetic profiles gave a T1/2 of 7 h and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produce faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH-responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid-sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles.
The adjuvant therapy of choice for superficial bladder cancer is the intravesical instillation of live Mycobacterium bovis Bacillus Calmette-Guerin (BCG). In spite of the fact that this therapy is the most effective treatment for superficial bladder cancer, intravesical administration of BCG is associated with high local morbidity and the potential for systemic infection. Therefore, there is a need for the development of safer, less toxic approaches to fight this disease. Since fibronectin attachment protein (FAP) is a key element in BCG retention and targeting to cells, we hypothesize that this protein can be used as targeting agent to deliver cytotoxic cargo for the treatment of bladder tumors. Here we evaluated the ability of bladder tumor cells to bind and endocytose FAP via fibronectin-integrin complexes. We found that microaggregation induced by an anti-FAP polyclonal antibody accelerated FAP uptake by T24 bladder tumor cells. FAP was determined to be internalized via a clathrin-independent, caveolae-dependent mechanism. Further, once within the endosomal compartment, FAP was targeted to the lysosomal compartment with negligible recycling to the plasma membrane. Importantly, we demonstrated that FAP microaggregation and internalization could also be triggered by multivalent Ni2+NTA-bearing liposomes. Overall, our studies validate the use of FAP as a targeting vector and provide the foundation for the design of more effective, less toxic bladder cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.