Unmanned aerial vehicle (UAV) is a growing technology used in different industries, and the main platform used for the UAVs is the quadcopter. The rotor of a quadcopter typically operates at low to moderate Reynolds number, so that the aerodynamics and an early prediction of the performance of the propellers are important in the design of the quadcopter. In the present chapter, the performance of a commercial propeller used in quadcopters is analyzed with three different techniques: momentum theory, blade element theory, and computational fluid dynamics. By applying the momentum and blade element theory, it was possible to estimate the thrust generated for a propeller in hover. A computational model based on computational fluid dynamics (CFD) was implemented and used to simulate a propeller in hover; the model predicts the wake and the thrust of the propeller as well. The results of the theory and computational approximations were compared with experimental measurements of flying tests.
The use of small rotors has increased due their applications in drones and UAVs. In order to improve the global performance of these aerial vehicles, it is necessary to understand the aerodynamics of small rotors, since this is related to the global energy consumption of such vehicles. Most of the computational fluid dynamics (CFD) studies found in the literature that are related to the analysis of small rotors employ fully turbulent models, despite the low-to-moderate Reynolds numbers of these applications. This paper presents CFD simulations for a small rotor at hover at different Reynolds numbers using fully turbulent and transitional SST k−ω turbulence models. Numerical results show that thrust and torque are close to experimental measurements, showing differences of less than 5% for both fully turbulent and transitional models. However, significant differences were observed between the fully turbulent and the transitional models when studying the boundary-layer development and separation. As the Reynolds number was increased, it was observed that at the tip of the blade, these differences were reduced, but at mid-span, the differences were more obvious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.