Summary
Improved, microfabric‐inspired rotational hardening rules for the plastic potential and bounding surfaces associated with the generalized bounding surface model for cohesive soils are presented. These hardening rules include 2 new functions, fη and
fI0, that improve the simulation of anisotropically consolidated cohesive soils. Three model parameters are associated with the improved hardening rules. A detailed procedure for obtaining suitable values for these parameters is presented. The first 2 parameters affect the simulation of constant stress ratio loading where, because of the presence of fη, the third parameter is inactive. The second new function,
fI0, accelerates the rotation of the plastic potential and bounding surfaces during shearing, which is particularly important for overconsolidated soils tested in extension. This paper also describes the proper manner in which to define the inherent anisotropy. This seemingly straightforward test has rarely been discussed in sufficient detail.
<p>The response of cohesive soils subjected to cyclic loading is affected by different factors; the most important are soil type, stress or consolidation history, and specific test conditions. To better understand the behavior of cohesive soils subjected to cyclic loading, beginning in early 1960’s, a rather substantial body of experimental work has been performed. This has involved different types of soils, tested at different values of overconsolidation ratio, and subjected to different cyclic loading histories. This paper compiles the most important findings of the aforementioned experimental work on cohesive soils. It summarizes the general behavioral trends observed for cyclically loaded cohesive soils. Besides, several key characteristics of cyclically loaded cohesive soils that any rational mathematical simulation must account for have been identified, thus offering the general trends that should be taken into account in the development of new constitutive models used in predicting the response of such soils.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.