An anisotropic elastoplastic bounding surface model with non-associative flow rule is developed for simulating the mechanical behavior of different types of clays. The non-associative flow rule allows for the simulation of not only strain-hardening but also strain-softening response. The theoretical framework of the model is given, followed by the verification of the model as applied to the experimental results of a strain-hardening Kaolin tested under different undrained stress paths. The undrained behavior of Boston Blue clay, which exhibits a strain-softening behavior, is also simulated. It is shown that the non-associative nature of the model gives more accurate results than those of the same model employing an associative flow rule, especially for normally consolidated Kaolin specimens. The results show that the model is also capable of simulating the strain-softening behavior of Boston blue clay with reasonable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.