The transforming growth factor-B (TGF-B) signaling pathway is a tumor-suppressor pathway that is commonly inactivated in colon cancer. TGF-B is a secreted ligand that mediates its effects through a transmembrane heteromeric receptor complex, which consists of type I (TGFBR1) and type II subunits (TGFBR2). Approximately 30% of colon cancers carry TGFBR2 mutations, demonstrating that it is a common target for mutational inactivation in this cancer. To assess the functional role of TGFBR2 inactivation in the multistep progression sequence of colon cancer, we generated a mouse model that recapitulates two common genetic events observed in human colon cancer by mating Apc 1638N/wt mice with mice that are null for Tgfbr2 in the intestinal epithelium, VillinCre;Tgfbr2E2flx/E2flx mice. mice showed enhanced expression and activity of matrix metalloproteinase MMP-2 and MMP-9, as well as increased TGF-B1 secretion in the conditioned medium. Similarly, primary tumor tissues from the Apc 1638N/wt ;Tgfbr2 IEKO mice also showed elevated amounts of TGF-B1 as well as higher MMP-2 activity in comparison with Apc 1638N/wt ;Tgfbr2E2fl x/E2fl x -derived tumors. Thus, loss of TGFBR2 in intestinal epithelial cells promotes the invasion and malignant transformation of tumors initiated by Apc mutation, providing evidence that Wnt signaling deregulation and TGF-B signaling inactivation cooperate to drive the initiation and progression, respectively, of intestinal cancers in vivo.
As an established mediator of inflammation, IL-6 is implicated to facilitate prostate cancer progression to androgen independence through transactivation of the androgen receptor. However, whether IL-6 plays a causative role in de novo prostate tumorigenesis was never investigated. We now provide the first evidence that IL-6 can induce tumorigenic conversion and further progression to an invasive phenotype of non-tumorigenic benign prostate epithelial cells. Moreover, we find that paracrine IL-6 stimulates autocrine IL-6 loop and autocrine activation of IGF-IR to confer the tumorigenic property and that activation of STAT3 is critical in these processes. Inhibition of STAT3 activation or IGF-IR signaling suppresses IL-6-mediated malignant conversion and the associated invasive phenotype. Inhibition of STAT3 activation suppresses IL-6-induced upregulation of IGF-IR and its ligands IGF-I and IGF-II. These findings indicate IL-6 signaling cooperates with IGF-IR signaling in the prostate microenvironment to promote prostate tumorigenesis and progression to aggressiveness. Our findings suggest that STAT3 and IGF-IR may represent potential effective targets for prevention or treatment of prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.