This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.
Abstract-To plan dynamic, whole-body motions for robots, one conventionally faces the choice between a complex, fullbody dynamic model containing every link and actuator of the robot, or a highly simplified model of the robot as a point mass. In this paper we explore a powerful middle ground between these extremes. We exploit the fact that while the full dynamics of humanoid robots are complicated, their centroidal dynamics (the evolution of the angular momentum and the center of mass (COM) position) are much simpler. By treating the dynamics of the robot in centroidal form and directly optimizing the joint trajectories for the actuated degrees of freedom, we arrive at a method that enjoys simpler dynamics, while still having the expressiveness required to handle kinematic constraints such as collision avoidance or reaching to a target. We further require that the robot's COM and angular momentum as computed from the joint trajectories match those given by the centroidal dynamics. This ensures that the dynamics considered by our optimization are equivalent to the full dynamics of the robot, provided that the robot's actuators can supply sufficient torque. We demonstrate that this algorithm is capable of generating highly-dynamic motion plans with examples of a humanoid robot negotiating obstacle course elements and gait optimization for a quadrupedal robot. Additionally, we show that we can plan without pre-specifying the contact sequence by exploiting the complementarity conditions between contact forces and contact distance.
The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demonstration of dexterous mobile robots executing a variety of tasks aided by a remote human operator using only data from the robot's sensor suite transmitted over a constrained, fieldrealistic communications link. We describe the design considerations, architecture, implementation and performance of the software that Team MIT developed to command and control an Atlas humanoid robot. Our design emphasized human interaction with an efficient motion planner, where operators expressed desired robot actions in terms of affordances fit using perception and manipulated in a custom user interface. We highlight several important lessons we learned while developing our system on a highly compressed schedule.
Operating a high degree of freedom mobile manipulator, such as a humanoid, in a field scenario requires constant situational awareness, capable perception modules, and effective mechanisms for interactive motion planning and control. A well‐designed operator interface presents the operator with enough context to quickly carry out a mission and the flexibility to handle unforeseen operating scenarios robustly. By contrast, an unintuitive user interface can increase the risk of catastrophic operator error by overwhelming the user with unnecessary information. With these principles in mind, we present the philosophy and design decisions behind Director—the open‐source user interface developed by Team MIT to pilot the Atlas robot in the DARPA Robotics Challenge (DRC). At the heart of Director is an integrated task execution system that specifies sequences of actions needed to achieve a substantive task, such as drilling a wall or climbing a staircase. These task sequences, developed a priori, make online queries to automated perception and planning algorithms with outputs that can be reviewed by the operator and executed by our whole‐body controller. Our use of Director at the DRC resulted in efficient high‐level task operation while being fully competitive with approaches focusing on teleoperation by highly trained operators. We discuss the primary interface elements that comprise Director, and we provide an analysis of its successful use at the DRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.