Nodes in wireless multi-hop networks establish links with their neighbors, which are used for data transmission. In general, in this kind of networks every node has the possibility of acting as a router, forwarding the received packets when they are not the final destination of the carried data. Due to the routing protocol procedures, when the network is quite dense the overload added by the routing management packets can be very high. To reduce the effects of this overload a topology control mechanism can be used, which can be implemented using different techniques. One of these techniques consists of enabling or disabling the routing functionality in every node. Many advantages result from selecting just a subset of nodes for routing tasks: reduction of collisions, protocol overhead, interference and energy consumption, better network organization and scalability. In this paper, a new protocol for topology control in wireless mesh networks is proposed. The protocol is based on the centrality metrics developed by social network analysts. Our target network is a wireless mesh network created by user hand-held devices. For this kind of networks, we aim to construct a connected dominating set that includes the most central nodes. The resulting performance using the three most common centrality measures (degree, closeness and betweenness) is evaluated. As we are working with dynamic and decentralized networks, a distributed implementation is also proposed and evaluated. Some simulations have been carried out to analyze the benefits of the proposed mechanism when reactive or proactive routing protocols are used. The results confirm that the use of the topology control contributes to a better network performance.
In this paper, a new mechanism for topology control in wireless\ud
mesh networks is proposed. We evaluate the application to this\ud
problem of the centrality metrics developed by social network\ud
analysts. Our target network is a wireless mesh network created\ud
by user hand-held devices. For this kind of networks, we aim to\ud
construct a connected dominating set that includes the most\ud
central nodes. Many advantages result from selecting just a subset\ud
of stations for routing tasks: reduction of collisions, protocol\ud
overhead, interference and energy consumption, better network\ud
organization and scalability. The resulting performance using the\ud
three most common centrality measures (degree, closeness and\ud
betweenness) is evaluated. As we are working with dynamic and\ud
decentralized networks,Peer ReviewedPostprint (published version
This paper proposes a mixed linear and integer optimization model for multi-hop ad-hoc networks to select the positions of the gateways over a certain area. This model mimics the routing behavior of such network and takes into account the maximum bandwidth capacity of the network gateways. We also include a suboptimal solution for the cases in which the complexity or the amount of the data make the optimal solution infeasible. Results in a pedestrian mesh network and in a VANET scenarios show that the model locates gateways in an efficient way and that the suboptimal solution is close to the optimal one in terms of the number of required gateways or the common selected gateways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.