In recent years, the general interest in routing for vehicular ad hoc networks (VANETs) has increased notably. Many proposals have been presented to improve the behavior of the routing decisions in these very changeable networks. In this paper, we propose a new routing protocol for VANETs that uses four different metrics. which are the distance to destination, the vehicles' density, the vehicles' trajectory and the available bandwidth, making use of the information retrieved by the sensors of the vehicle, in order to make forwarding decisions, minimizing packet losses and packet delay. Through simulation, we compare our proposal to other protocols, such as AODV (Ad hoc On-Demand Distance Vector), GPSR (Greedy Perimeter Stateless Routing), I-GPSR (Improvement GPSR) and to our previous proposal, GBSR-B (Greedy Buffer Stateless Routing Building-aware). Besides, we present a performance evaluation of the individual importance of each metric to make forwarding decisions. Experimental results show that our proposed forwarding decision outperforms existing solutions in terms of packet delivery.
In the last few years, many routing protocols have been proposed for vehicular ad hoc networks (VANETs) because of their specific characteristics. Protocols that use several metrics have been shown to be the most adequate to VANETs due to their effectiveness in dealing with dynamic environment changes due to vehicle mobility. Metrics such as distance, density, link stability, speed, and position were selected by the authors for the best proposal. Several surveys of routing proposals have been generated to categorize contributions and their application scenarios, but none of them focused on multimetric approaches. In this paper, we present a review of the routing protocols based on more than one metric to select the best route in a VANET. The main objective of this research was to present the contemporary most frequently used metrics in the different proposals and their application scenarios. This review helps in the selection protocols or the creation of metrics when a new protocol is designed.This survey of multimetric VANET routing protocols employed systematic literature-review (SLR) methodology in four well-knownown databases that allowed to analyze current state-of-the-art proposals. In addition, this paper provides a description of these multimetric routing protocols. Our findings indicate that distance and speed are the most popular and versatile metrics. Finally, we define some possible directions for future research related to the use of this class of protocols.
Video over vehicular networks continues to receive warranted attention, with envisioned applications having the potential to present entirely new opportunities and revolutionise existing services. Many video systems have been proposed, ranging from safety to advertising. We propose a novel system for VANETs, namely the TArgeted Remote Surveillance (TARS) module for the existing Greedy Perimeter Stateless Routing (GPSR) protocol which permits multiple mobile vehicles to request and receive live video feeds from vehicles within a select geographic region. The multi-hop, vehicle-to-vehicle system enables mobile units to surveil a target area in real time by leveraging the dashboard cameras of vehicles moving within the target region. We combine several proposed extensions to the core protocol to introduce a dynamic real time congestion aware clustering scheme to achieve this. Our proposed system is compared against existing routing protocols using mobility data from Nottingham. GPSR-TARS outperforms the protocols assessed in key criteria crucial for meeting the quality of service demands of live multimedia dissemination.
Buildings are important elements of cities for VANETs, since these obstacles may attenuate communications between vehicles. Consequently, the impact of buildings has to be considered as part of the attenuation model in VANET simulations of urban scenarios. However, the more elaborated the model, the more information needs to be processed during the simulation, which implies longer processing times. This complexity in simulations is not always worth it, because simplified channel models occasionally offer very accurate results. We compare three approaches to model the impact of buildings in the channel model of simulated VANETs in two urban scenarios. The simulation results for our evaluation scenarios of a traffic-efficiency application indicate that modeling the influence of buildings in urban areas as the total absence of communication between vehicles gives similar results to modeling such influence in a more realistic fashion and could be considered a conservative bound in the performance metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.