Mate (Ilex paraguariensis A.St.-Hil.) is generally recognized as safe (GRAS status) and has a high content of alkaloids, saponins, and phenolic acids. Addition of mate extract to broilers feed has been shown to increase the oxidative stability of chicken meat, however, its effect on beef quality from animals supplemented with mate extract has not been investigated so far. Addition of extract of mate to a standard maize/soy feed at a level of 0.5, 1.0 or 1.5% w/w to the diet of feedlot for cattle resulted in increased levels of inosine monophosphate, creatine and carnosine in the fresh meat. The content of total conjugated linoleic acid increased in the meat as mate extract concentration was increased in the feed. The tendency to radical formation in meat slurries as quantified by EPR spin-trapping decreased as increasing mate extract addition to feed, especially after storage of the meat, indicating higher oxidative stability. Mate supplementation in the diet did not affect animal performance and carcass characteristics, but meat from these animals was more tender and consequently more accepted by consumers. Mate extract is shown to be a promising additive to feedlot diets for cattle to improve the oxidative stability, nutritive value and sensory quality of beef.
To clarify the relationship between beef genetic selection for growth and precocity with muscle metabolism and metabolites, we performed metabolomic analysis using Longissimus lumborum (LL) muscle from Nellore cattle with divergent selection for these traits (high growth, HG; low growth, LG; high precocity, HP; low precocity, LP). Genetic potential for growth affected muscle protein and energetic metabolism. HG animals had a high concentration of arginine, carnosine, and leucine compared to LG animals. HP animals presented a high concentration of glutamine, betaine, creatinine, isoleucine, carnitine, acetyl carnitine, and lower levels of glucose compared to LP animals, affecting protein and fatty acid metabolism. Intensity of selection (high or low) was correlated with changes in protein metabolism, and the type of selection (growth or precocity) affected fat metabolism. In conclusion, both HG and HP appear to be correlated with a high concentration of protein metabolites and changes in protein metabolic pathways, while selection for precocity is more correlated with changes in fat metabolism compared to animals selected for growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.