Chitosan nanoparticles have been extensively studied for both drug and protein/peptide delivery. The aim of this study was to develop an optimized chitosan nanoparticle, by ionotropic gelation method, using 3 full factorial design with a novel polyanion, sodium polyphosphate, well known under the trade name Graham salt. The effects of these parameters on the particle size, zeta potential, and morphology and association efficiency were investigated. The optimized nanoparticles showed an estimated size of 166.20±1.95nm, a zeta potential of 38.7±1.2mV and an efficacy of association of 97.0±2.4%. The Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) revealed spherical nanoparticles with uniform size. Molecular interactions among the components of the nanoparticles and peptide were evaluated by Fourier Transform Infrared Spectra (FTIR) and Differential Scanning Calorimetry (DSC). The obtained results indicated that, the developed nanoparticles demonstrated high biocompatible, revealing no or low toxicity in the human cancer cell line (Caco-2). In conclusion, this work provides parameters that contribute to production of chitosan nanoparticles and sodium polyphosphate with desirable size, biocompatible and enabling successful use for protein/peptides delivery.
Ursolic acid (UA) is a naturally occurring triterpenoid which is a promising candidate for the development of new therapeutic approaches and for the prevention and treatment of several diseases owing to its pharmacological importance. However, its low solubility in aqueous medium affects its therapeutic application. Several strategies have been used to overcome this obstacle. In this study, the incorporation of UA in to different drug delivery systems was found to be highly efficient. In addition, important investigations were performed about methods for qualitative and quantitative analyses of UA in various raw materials, including plants, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, gas chromatography-mass spectrometry and capillary electrophoresis were used for this purpose. Thus, this review was performed to evaluate the biological effects of UA demonstrated thus far as well as the currently used, delivery systems and analytical methods.
The term cancer represents a set of more than 100 diseases that are caused due to an uncontrolled growth of cells; and their subsequent spread to the other tissues and organs of the body by a phenomenon, called 'metastasis'. According to the estimates provided by the World Health Organization (WHO), cancer is expected to account for about 10 million deaths per year by 2020, and 21 million cancer cases, which may lead to 13 million deaths by 2030, making cancer as the cause of highest mortality in contrast to other diseases. The search for potential therapeutics against cancer, which can reduce the side-effects that occur due to the difficulty of recognition between cancerous and normal cells, has ever been increased. In this view, nanotechnology, especially metallic nanoparticles (MNPs), comes to aid in the development of novel therapeutic agents, which may be synthesized or modified with the most diverse functional chemical groups; this property makes the metallic nanoparticles suitable for conjugation with already known drugs or prospective drug candidates. The biocompatibility, relatively simple synthesis, size flexibility and easy chemical modification of its surface, all make the metallic nanoparticles highly advantageous for opportune diagnosis and therapy of cancer. The present article analyzes and reports the anti-tumor activities of 78 papers of various metallic nanoparticles, particularly the ones containing copper, gold, iron, silver, and titanium in their composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.