Retinoblastoma (RB) is the most common intraocular malignancy in childhood. Approximately 40% of retinoblastomas are hereditary and due to germline mutations in the RB1 gene. Children with hereditary RB are also at risk for developing a midline intracranial tumor, most commonly pineoblastoma. We recommend intensive ocular screening for patients with germline RB1 mutations for retinoblastoma as well as neuroimaging for pineoblastoma surveillance. There is an approximately 20% risk of developing second primary cancers among individuals with hereditary RB, higher among those who received radiotherapy for their primary RB tumors. However, there is not yet a clear consensus on what, if any, screening protocol would be most appropriate and effective. Neuroblastoma (NB), an embryonal tumor of the sympathetic nervous system, accounts for 15% of pediatric cancer deaths. Prior studies suggest that about 2% of patients with NB have an underlying genetic predisposition that may have contributed to the development of NB. Germline mutations in ALK and PHOX2B account for most familial NB cases. However, other cancer predisposition syndromes, such as Li-Fraumeni syndrome, RASopathies, and others, may be associated with an increased risk for NB. No established protocols for NB surveillance currently exist. Here, we describe consensus recommendations on hereditary RB and NB from the AACR Childhood Cancer Predisposition Workshop.
The gemcitabine-docetaxel regimen demonstrated antitumor activity against advanced pediatric (mainly Ewing) sarcomas, allowing for good quality of life. Evaluation in a large, formal phase 2 trials for Ewing patients is ongoing.
This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are epigenetically controlled in the fibrotic disorders involved in retinal detachment, but results also reinforced the contribution of neurovascularization (ETS1, HES5, PRDM16) in diabetic retinopathy. Finally, we had studied the methylome in the most frequent intraocular tumors in adults and children (uveal melanoma and retinoblastoma, respectively). We observed that hypermethylation of tumor suppressor genes is a frequent event in ocular tumors, but also unmethylation is associated with tumorogenesis. Interestingly, unmethylation of the proto-oncogen RAB31 was a predictor of metastasis risk in uveal melanoma. Loss of methylation of the oncogenic mir-17-92 cluster was detected in primary tissues but also in blood from patients.
Children and adolescents who present with neuroendocrine tumors are at extremely high likelihood of having an underlying germline predisposition for the Multiple Endocrine Neoplasia (MEN) syndromes, including MEN1, MEN2A and B, MEN4, and Hyperparathyroid-Jaw Tumor (HPT-JT) Syndromes. Each of these autosomal dominant syndromes results from a specific germline mutation in unique genes: MEN1 is due to pathogenic MEN1 variants (11q13), MEN2A and B are due to pathogenic RET variants (10q11.21), MEN4 is due to pathogenic CDKN1B variants (12p13.1), and the HPT-JT Syndrome is due to pathogenic CDC73 variants (1q25). Although each of these genetic syndromes share the presence of neuroendocrine tumors, each syndrome has a slightly different tumor spectrum with specific surveillance recommendations based upon tumor penetrance, including the age and location for which specific tumor types most commonly present. Although the recommended surveillance strategies for each syndrome contain similar approaches, important differences do exist among them. Therefore, it is important for caregivers of children and adolescents with these syndromes to become familiar with the unique diagnostic criteria for each syndrome, and also to be aware of the specific tumor screening and prophylactic surgery recommendations for each syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.