Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species' invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point-a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.
ObjectiveThe invasive mussel, Mytilus galloprovincialis has established invasive populations across the globe and in some regions, have completely displaced native mussels through competitive exclusion. The objective of this study was to elucidate global connectivity patterns of M. galloprovincialis strictly using archived cytochrome c oxidase 1 sequence data obtained from public databases. Through exhaustive mining and the development of a systematic workflow, we compiled the most comprehensive global CO1 dataset for M. galloprovincialis thus far, consisting of 209 sequences representing 14 populations. Haplotype networks were constructed and genetic differentiation was assessed using pairwise analysis of molecular variance.ResultsThere was significant genetic structuring across populations with significant geographic patterning of haplotypes. In particular, South Korea, South China, Turkey and Australasia appear to be the most genetically isolated populations. However, we were unable to recover a northern and southern hemisphere grouping for M. galloprovincialis as was found in previous studies. These results suggest a complex dispersal pattern for M. galloprovincialis driven by several contributors including both natural and anthropogenic dispersal mechanisms along with the possibility of potential hybridization and ancient vicariance events.Electronic supplementary materialThe online version of this article (10.1186/s13104-018-3328-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.