SELEX Galileo has developed avalanche photodiode technology in HgCdTe to serve a whole range of applications in defence, security, commercial and space research. Burst-illumination LIDAR (BIL), using a near-infrared pulse laser and a fast, gated detector, is now adopted for most long range imaging applications. New results from range trials using prototype systems based on multifunctional and 3D detectors are reported. In the astronomy field, APD arrays at 2.5 μm cutoff can provide near-single photon sensitivity for future wavefront sensors and interferometric applications. Under a contract from European Southern Observatories arrays have been successfully demonstrated with gains up to 20× and negligible dark current at 77K. Under a European Space Agency contract, a large area, single element detector has been designed for the 2.015µm CO 2 absorption line. The sensor is specifically designed to be operated at 200K so that thermoelectric cooling is viable. The element is made up of many sub-pixel diodes each deselectable to ensure high breakdown in the macro-pixel. The latest results of the detector and its associated transimpedance amplifier (TIA) are presented.
The development of a new thermal imaging camera, for long range surveillance applications, is described together with the enabling technology. Previous publications have described the development of large arrays of 12µm pixels using Metal Organic Vapour Phase Epitaxy (MOVPE) grown Mercury Cadmium Telluride (MCT) for wide area surveillance applications. This technology has been leveraged to produce the low cost 1280x720 pixel Medium Wave IR focal plane array at the core of the new camera. Also described is the newly developed, high performance, x12 continuous zoom lens which, together with the detector, achieves an Instantaneous Field of View (IFOV) of 12.5µrad/pixel enabling long detection, recognition and identification ranges. Novel image processing features, including the turbulence mitigation algorithms deployed in the camera processing electronics, are also addressed. Resultant imagery and performance will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.