Through substrate via’s are essential in many GaAs monolithic microwave integrated circuits (MMIC’s). They allow for increased circuit complexity and provide low inductance grounding. A dry etch process is described which has been used for etching vias through 0.2 mm thick GaAs substrates. Freon 12 (CCl2F2) is used at high pressure in a RIE mode at 13.6 MHz. Polymer formation has been identified to be the key to controlling the hole profile.
Twinkle is a space mission designed for visible and near-IR spectroscopic observations of extrasolar planets. Twinkle's highly stable instrument will allow the photometric and spectroscopic observation of a wide range of planetary classes around different types of stars, with a focus on bright sources close to the ecliptic. The planets will be observed through transit and eclipse photometry and spectroscopy, as well as phase curves, eclipse mapping and multiple narrow-band time-series. The targets observed by Twinkle will be composed of known exoplanets mainly discovered by existing and upcoming ground surveys in our galaxy (e.g. WASP, HATNet, NGTS and radial velocity surveys) and will also feature new discoveries by space observatories (K2, GAIA, Cheops, TESS).Twinkle is a small satellite with a payload designed to perform high-quality astrophysical observations while adapting to the design of an existing Low Earth Orbit commercial satellite platform. The SSTL-300 bus, to be launched into a lowEarth sun-synchronous polar orbit by 2019, will carry a half-meter class telescope with two instruments (visible and near-IR spectrographs -between 0.4 and 4.5µm -with resolving power R~300 at the lower end of the wavelength scale) using mostly flight proven spacecraft systems designed by Surrey Satellite Technology Ltd and a combination of high TRL instrumentation and a few lower TRL elements built by a consortium of UK institutes. The Twinkle design will enable the observation of the chemical composition and weather of at least 100 exoplanets in the Milky Way, including super-Earths (rocky planets 1-10 times the mass of Earth), Neptunes, sub-Neptunes and gas giants like Jupiter. It will also allow the follow-up photometric observations of 1000+ exoplanets in the visible and infrared, as well as observations of Solar system objects, bright stars and disks.
This paper reviews the current status of the growth of fully doped HgCdTe (MCT) devices by metalorganic vapor phase epitaxy (MOVPE). The current reactor system has been developed to produce 3-inch diameter epitaxial layers compatible with slice-scale processing. The new reactor system has achieved routine epitaxial growth of MCT with good morphology onto both gallium arsenide (GaAs) and GaAs on silicon (Si) wafers that were oriented (2-8°) off (100) orientation. The density of surface defects (so-called ''hillocks''), typical of MOVPE growth on such orientation substrates, has been reduced to ,5 cm ÿ 2 at a sufficient yield to make the production of low cluster defect 2D arrays possible. Alternative growth experiments onto cadmium telluride (CdTe) on Si substrates with (211)B orientation have also been performed to investigate their usefulness for infrared focal plane array (IRFPA) applications. Si substrates give better thermal expansion match to the read out Si circuits (ROIC). The horizontal reactor cell design has a graphite susceptor with a rotating platen capable of using substrates up to 4-inch diameter. Work, however, has concentrated on 3-inch diameter GaAs and GaAs on Si wafers substrates in the reactor, and these reproducibly demonstrated good compositional and thickness uniformity. Cut-off wavelength and thickness uniformity maps showed that there was sufficient uniformity to produce twelve sites of large format 2D arrays (640 3 512 diodes on 24-mm pitch) per slice. Minority carrier lifetimes in heterostructures is an important parameter and some factors affecting this are discussed, with special emphasis on As-doped material grown under various growth conditions in an attempt to reduce Shockley-Read (S-R) trap densities. New data are presented on trap densities and theoretical fitting of lifetimes in MOVPE material. Fully doped heterostructures have been grown to investigate the device performance in the 3-5 mm medium-wave IR (MWIR) band and 8-12 mm long-wave IR (LWIR). These layers have been fabricated into mesa arrays and then indium-bumped onto Si multiplexers. A summary of the 80-K device results shows that stateof-the-art device performance has been demonstrated in MOVPE-grown device structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.