IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardiovascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Generation of the lipid messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) is crucial for development, cell growth and survival, and motility, and it becomes dysfunctional in many diseases including cancers. Here we reveal a mechanism for PtdIns(3,4,5)P3 generation by scaffolded phosphoinositide kinases. In this pathway, class I phosphatidylinositol-3-OH kinase (PI(3)K) is assembled by IQGAP1 with PI(4)KIIIα and PIPKIα, which sequentially generate PtdIns(3,4,5)P3 from phosphatidylinositol. By scaffolding these kinases into functional proximity, the PtdIns(4,5)P2 generated is selectively used by PI(3)K for PtdIns(3,4,5)P3 generation, which then signals to PDK1 and Akt that are also in the complex. Moreover, multiple receptor types stimulate the assembly of this IQGAP1–PI(3)K signalling complex. Blockade of IQGAP1 interaction with PIPKIα or PI(3)K inhibited PtdIns(3,4,5)P3 generation and signalling, and selectively diminished cancer cell survival, revealing a target for cancer chemotherapy.
Since its discovery in 1994, cellular functions for the scaffold protein IQGAP1 have expanded immensely. Over 100 unique IQGAP1 interacting proteins have been identified, implicating IQGAP1 as a critical integrator of cellular signaling pathways. Initial research established functions for IQGAP1 in cell-cell adhesion, cell migration, and cell signaling. Recent studies have revealed additional IQGAP1 binding partners, expanding the biological roles of IQGAP1. These include crosstalk between signaling cascades, regulation of nuclear function, and Wnt pathway potentiation. Investigation of the IQGAP2 and IQGAP3 homologues demonstrate unique functions, some of which differ from those of IQGAP1. Summarized here are recent observations that enhance our understanding of IQGAP proteins in integrating diverse signaling pathways.
Summary
Endosomal trafficking and degradation of epidermal growth factor receptor (EGFR) play an essential role in control of its signaling. Phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2) is an established regulator of endocytosis, whereas PtdIns3P modulates endosomal trafficking. However, here we demonstrate that type Igamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes PtdIns4,5P2, controls endosome to lysosome sorting of EGFR. In this pathway, PIPKIγi5 interacts with sorting nexin 5 (SNX5), a protein that binds PtdIns4,5P2 and other phosphoinositides. PIPKIγi5 and SNX5 localize to endosomes, and loss of either protein blocks EGFR sorting into intraluminal vesicles (ILVs) of the multivesicular body (MVB). Loss of ILV sorting greatly enhances and prolongs EGFR signaling. PIPKIγi5 and SNX5 prevent Hrs ubiquitination and this facilitates the Hrs association with EGFR that is required for ILV sorting. These findings reveal that PIPKIγi5 and SNX5 form a unique signaling nexus that controls EGFR endosomal sorting, degradation, and signaling.
Phosphatidylinositol 4,5 bisphosphate (PIP 2 ) is a key lipid messenger for regulation of cell migration. PIP 2 modulates many effectors, but the specificity of PIP 2 signalling can be defined by interactions of PIP 2 -generating enzymes with PIP 2 effectors. Here, we show that type Ic phosphatidylinositol 4-phosphate 5-kinase (PIPKIc) interacts with the cytoskeleton regulator, IQGAP1, and modulates IQGAP1 function in migration. We reveal that PIPKIc is required for IQGAP1 recruitment to the leading edge membrane in response to integrin or growth factor receptor activation. Moreover, IQGAP1 is a PIP 2 effector that directly binds PIP 2 through a polybasic motif and PIP 2 binding activates IQGAP1, facilitating actin polymerization. IQGAP1 mutants that lack PIPKIc or PIP 2 binding lose the ability to control directional cell migration. Collectively, these data reveal a synergy between PIPKIc and IQGAP1 in the control of cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.