These findings, which need to be confirmed in a larger cohort, suggest that a Th17-targeted therapeutic approach may be useful for anti-TNFα non-responder patients or as an adjunct to anti-TNFα therapy, provided that safety concerns can be addressed.
Psoriasis is a chronic inflammatory skin disease, most commonly resulting in the occurrence of red and silver scaly plaques. About 30% of psoriasis sufferers develop psoriatic arthritis (PsA), a disorder that presents with additional joint inflammation and other clinical features. At present, the most effective treatment for moderate and severe psoriasis and PsA are biologics such as antitumor necrosis factor alpha therapy. Biologics are costly and typically require repeated injections; hence, the development of novel, orally available, small molecular inhibitors that are less expensive to produce is highly desirable. The phosphodiesterase 4 inhibitor apremilast is a small molecular inhibitor that acts by increasing cyclic adenosine monophosphate levels, ultimately suppressing tumor necrosis alpha production. Apremilast has been tested in a number of psoriasis and PsA pilot and Phase II trials to evaluate its efficacy and safety. More recently, three larger double-blinded, and randomized multicenter studies demonstrate that apremilast is efficacious in the treatment of psoriasis and PsA, with significantly higher numbers of apremilast-treated patients achieving endpoints of a 75% reduction compared to baseline in Psoriasis Area and Severity Index (PASI-75) or American College of Rheumatology-20 scores, relative to placebo. This encouraging data, along with a tolerable incidence of mild to moderate adverse events, has led to the initiation of several large Phase III trials that aim to further validate apremilast as a treatment for psoriasis and PsA. Here, we provide an overview of the current treatments for psoriasis and PsA, and summarize the findings from multiple Phase II clinical trials where the effects of apremilast in the treatment of psoriasis and PsA patients have been investigated.
IntroductionType 4 phosphodiesterases (PDE4) play an important role in immune cells through the hydrolysis of the second messenger, cAMP. Inhibition of PDE4 has previously been shown to suppress immune and inflammatory responses, demonstrating PDE4 to be a valid therapeutic target for immune-mediated pathologies. We assessed the anti-inflammatory effects of a novel PDE4 inhibitor, apremilast, in human synovial cells from rheumatoid arthritis (RA) patients, as well as two murine models of arthritis.MethodsCells liberated from tissue excised from arthritic joints of RA patients were cultured in the presence of increasing concentrations of apremilast for 48 hours and spontaneous tumour necrosis factor-alpha (TNFα) production was analysed in culture supernatants by ELISA. In addition, arthritis was induced in BALB/c and DBA/1 mice by passive transfer of anti-type II collagen mAb and immunisation with type II collagen, respectively. Mice with established arthritis received 5 or 25 mg/kg apremilast and disease severity was monitored relative to mice receiving vehicle alone. At the end of the study, paws were removed and processed for histopathological assessment. Behavioural effects of apremilast, relative to rolipram, were assessed in naïve DBA/1 mice using an automated activity monitor (LABORAS).ResultsApremilast dose dependently inhibited spontaneous release of TNFα from human rheumatoid synovial membrane cultures. Furthermore, apremilast significantly reduced clinical score in both murine models of arthritis over a ten day treatment period and maintained a healthy joint architecture in a dose-dependent manner. Importantly, unlike rolipram, apremilast demonstrated no adverse behavioural effects in naïve mice.ConclusionsApremilast is an orally available PDE4 inhibitor that reduces TNFα production from human synovial cells and significantly suppresses experimental arthritis. Apremilast appears to be a potential new agent for the treatment of rheumatoid arthritis.
Background Previously we described a system whereby human peripheral blood T cells stimulated for 8 days in a cytokine cocktail acquired effector function for contact-dependent induction of proinflammatory cytokines from monocytes. We termed these cells cytokine-activated (Tck) cells and found that the signalling pathways elicited in the responding monocytes were identical whether they were placed in contact with Tck cells or with T cells isolated from rheumatoid arthritis (RA) synovial tissue.
Increasing evidence suggests that regulatory T cell (Treg) function is impaired in chronic inflammatory diseases such as rheumatoid arthritis (RA). Here we demonstrate that Tregs are unable to modulate the spontaneous production of TNF-α from RA synovial cells cultured from the diseased synovium site. Cytokine (IL-2, IL-6, TNF-α) activated T cells (Tck), cells we previously demonstrated to mimic the effector function of pathogenic RA synovial T cells, contained Tregs that survived and divided in this cytokine environment; however, the up-regulation of key molecules associated with Treg function (CTLA-4 and LFA-1) was impaired. Furthermore, Tregs were unable to suppress the function of Tcks, including contact-dependent induction of TNF-α from macrophages, supporting the concept that impaired Treg function/responsiveness contributes to chronicity of RA. However, ectopic foxp3 expression in both Tcks and pathogenic RA synovial T cells attenuated their cytokine production and function, including contact-dependent activation of macrophages. This diminished response to cytokine activation after ectopic foxp3 expression involved inhibited NF-κB activity and differed mechanistically from that displayed endogenously in conventional Tregs. These results suggest that diseases such as RA may perpetuate owing to the inability of Tregs to control cytokine-activated T-cell function. Understanding the mechanism whereby foxp3 attenuates the pathogenic function of synovial T cells may provide insight into the mechanisms of chronicity in inflammatory disease and potentially reveal new therapeutic candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.