This paper explores the data cleaning challenges that arise in using WiFi connectivity data to locate users to semantic indoor locations such as buildings, regions, rooms. WiFi connectivity data consists of sporadic connections between devices and nearby WiFi access points (APs), each of which may cover a relatively large area within a building. Our system, entitled semantic LOCATion cleanER (LOCATER), postulates semantic localization as a series of data cleaning tasks - first, it treats the problem of determining the AP to which a device is connected between any two of its connection events as a missing value detection and repair problem. It then associates the device with the semantic subregion (e.g., a conference room in the region) by postulating it as a location disambiguation problem. LOCATER uses a bootstrapping semi-supervised learning method for coarse localization and a probabilistic method to achieve finer localization. The paper shows that LOCATER can achieve significantly high accuracy at both the coarse and fine levels.
Messaging and communication is a critical aspect of next generation Internet-of-Things (IoT) systems where interactions among devices, software systems/services and end-users is the expected mode of operation. Given the diverse and changing communication needs of entities, the data exchange interactions may assume different protocols (MQTT, CoAP, HTTP) and interaction paradigms (point to point, multicast, unicast). In this paper, we address the issue of supporting adaptive communications in IoT systems through a mediation-based architecture for data exchange. Here, components called mediators support protocol translation to bridge the heterogeneity gap. Aiming to provide a placement of mediators to nodes, we introduce an integer linear programming solution that takes as input: a set of Edge nodes, IoT devices, and networking semantics. Our proposed solution achieves adaptive placement resulting in timely interactions between IoT devices for larger topologies of IoT spaces. CCS CONCEPTS • Computer systems organization → Heterogeneous (hybrid) systems; • Hardware → Sensor applications and deployments; • General and reference → Performance; • Software and its engineering → Message oriented middleware.
This paper presents SmartSPEC, an approach to generate customizable smart space datasets using sensorized spaces in which people and events are embedded. Smart space datasets are critical to design, deploy and evaluate robust systems and applications to ensure cost-effective operation and safety/comfort/convenience of the space occupants. Often, real-world data is difficult to obtain due to the lack of fine-grained sensing; privacy/security concerns prevent the release and sharing of individual and spatial data. SmartSPEC is a smart space simulator and data generator that can create a digital representation (twin) of a smart space and its activities. SmartSPEC uses a semantic model and ML-based approaches to characterize and learn attributes in a sensorized space, and applies an eventdriven simulation strategy to generate realistic simulated data about the space (events, trajectories, sensor datasets, etc). To evaluate the realism of the data generated by SmartSPEC, we develop a structured methodology and metrics to assess various aspects of smart space datasets, including trajectories of people and occupancy of spaces. Our experimental study looks at two real-world settings/datasets: an instrumented smart campus building and a city-wide GPS dataset. Our results show that the trajectories produced by SmartSPEC are 1.4x to 4.4x more realistic than the best synthetic data baseline when compared to real-world data, depending on the scenario and configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.