Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Coronary computed tomography (CT) allows for the acquisition of thin slices of the heart and coronary arteries, which can be used to detect and quantify coronary artery calcium (CAC), a marker of atherosclerotic cardiovascular disease. Despite the proven clinical value in cardiac risk prognostication, there remain concerns regarding radiation exposure from CAC CT scans. There have been several recent technical advancements that allow for significant radiation dose reduction in CAC scoring. This paper reviews the clinical utility and recent literature in low radiation dose CAC scoring.
BACKGROUNDRadiation exposure increases the risk of coronary artery disease (CAD). We explored the association of CAD with coronary artery dose-volume parameters in patients treated with 3D-planned radiation therapy (RT).METHODSPatients who received thoracic RT and were evaluated by cardiac computed tomography ≥ 1 year later were included. Demographic data and cardiac risk factors were retrospectively collected. Dosimetric data (mean heart dose, dmax, dmean, V50 - V5) were collected for the whole heart and for each coronary artery. A coronary artery calcium (CAC) Agatston score was calculated on a per-coronary basis and as a total score. Multivariable generalized linear mixed models were generated. The predicted probabilities were used for receiver operating characteristic analyses.RESULTSTwenty patients with a median age of 53 years at the time of RT were included. Nine patients (45%) had ≥ 3/6 conventional cardiac risk factors. Patients received RT for breast cancer (10, 50%), lung cancer (6, 30%), or lymphoma/myeloma (4, 20%) with a median dose of 60 Gy. CAC scans were performed a median of 32 months after RT. CAC score was significantly associated with radiation dose and presence of diabetes. In a multivariable model adjusted for diabetes, segmental coronary artery dosimetric parameters (dmax, dmean, V50, V40 V30, V20, V10, and V5) were significantly associated with CAC score > 0. V50 had the highest area under the ROC curve (0.89, 95% confidence interval, 0.80-0.97).CONCLUSIONSCoronary artery radiation exposure is strongly correlated with subsequent segmental CAC score. Coronary calcification may occur soon after RT and in individuals with conventional cardiac risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.