Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian. We demonstrate the controlled periodic coupling of topological boundary states at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling or superconductivity, and may allow the realization of Kitaev-like Hamiltonians and Majorana-type end states.
Hexagonal boron nitride (hBN) is an emerging material in nanophotonics and an attractive host for color centers for quantum photonic devices. Here, we show that optical emission from individual quantum emitters in hBN is spatially correlated with structural defects and can display ultranarrow zero-phonon line width down to 45 μeV if spectral diffusion is effectively eliminated by proper surface passivation. We demonstrate that undesired emission into phonon sidebands is largely absent for this type of emitter. In addition, magneto-optical characterization reveals cycling optical transitions with an upper bound for the g-factor of 0.2 ± 0.2. Spin-polarized density functional theory calculations predict possible commensurate transitions between like-spin electron states, which are in excellent agreement with the experimental nonmagnetic defect center emission. Our results constitute a step toward the realization of narrowband quantum light sources and the development of spin-photon interfaces within 2D materials for future chip-scale quantum networks.
Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with great promise for fast functional electronics and optoelectronics. We demonstrate the controlled structural modification of few-layer BP along arbitrary crystal directions with sub-nanometer precision for the formation of few-nanometer-wide armchair and zigzag BP nanoribbons. Nanoribbons are fabricated, along with nanopores and nanogaps, using a combination of mechanical–liquid exfoliation and in situ transmission electron microscopy (TEM) and scanning TEM nanosculpting. We predict that the few-nanometer-wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. The demonstration of this procedure is key for the development of BP-based electronics, optoelectronics, thermoelectrics, and other applications in reduced dimensions.
A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.