The sensitivity of brain tissue to weak extracellular electric fields is important in assessing potential public health risks of extremely low frequency (ELF) fields, and potential roles of endogenous fields in brain function. Here we determine the effect of applied electric fields on membrane potentials and coherent network oscillations. Applied DC electric fields change transmembrane potentials in
Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.
How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (Ͼ100 Hz) and reduction in system complexity. HFA is generated by the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles of HFA are generated by the near-synchronous (within ϳ5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing perturbations can trigger seizures. Transition to seizure is characterized by a rapid expansion and fusion of the neuronal populations responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the high-amplitude low-frequency activity of the seizure.
The mechanisms of seizure emergence, and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research and clinical epileptology. Our study shows that the transition to seizure is not a sudden phenomenon, but a slow process characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon observable in systems characterized by transitions between contrasting dynamical regimes. In epilepsy, this complex process is modulated by the synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and can exert opposing effects on the dynamics of a seizuregenerating network, causing either stabilizing anti-seizure or destabilizing pro-seizure effects. We show that the multifaceted nature of IEDs is defined by the dynamical state of the seizuregenerating network at the moment of the discharge occurrence, not necessarily by the existence of distinct cellular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.