A longstanding research goal has been to understand the nature and role of copper–oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper–oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013–1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047–1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper–oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper–oxygen cores discussed.
Two new ligand sets, pipMeLH2 and NO2LH2 (pipMeL = N,N′-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide, NO2L = N,N′-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide), are reported which are designed to perturb the overall electronics of the copper(III)–hydroxide core and the resulting effects on the thermodynamics and kinetics of its hydrogen-atom abstraction (HAT) reactions. Bond dissociation energies (BDEs) for the O–H bonds of the corresponding Cu(II)–OH2 complexes were measured that reveal that changes in the redox potential for the Cu(III)/Cu(II) couple are only partially offset by opposite changes in the pKa, leading to modest differences in BDE among the three compounds. The effects of these changes were further probed by evaluating the rates of HAT by the corresponding Cu(III)–hydroxide complexes from substrates with C–H bonds of variable strength. These studies revealed an overarching linear trend in the relationship between the log k (where k is the second-order rate constant) and the ΔH of reaction. Additional subtleties in measured rates arise, however, that are associated with variations in hydrogen-atom abstraction barrier heights and tunneling effciencies over the temperature range from −80 to −20 °C, as inferred from measured kinetic isotope effects and corresponding electronic-structure-based transition-state theory calculations.
The stretching frequency, ν(Cu–O), of the [CuOH]2+ core in the complexes LCuOH (L = N,N′-bis(2,6-diisopropyl-4-R-phenyl)pyridine-2,6-dicarboxamide, R = H or NO2, or N,N′-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide) was determined to be ~630 cm−1 by resonance Raman spectroscopy and verified by isotopic labeling. In efforts to use Badger’s rule to estimate the bond distance corresponding to ν(Cu–O), a modified version of the rule was developed through use of stretching frequencies normalized by dividing by the appropriate reduced masses. The modified version was found to yield excellent fits of normalized frequencies to bond distances for >250 data points from theory and experiment for a variety of M–X and X–X bond distances in the range ~1.1–2.2 Å (root mean squared errors for the predicted bond distances of 0.03 Å). Using the resulting general equation, the Cu–O bond distance was predicted to be ~1.80 Å for the reactive [CuOH]2+ core. Limitations of the equation and its use in predictions of distances in a variety of moieties for which structural information is not available were explored.
A new trinuclear iron(II) complex involving two isocyanoferrocene ligands axially coordinated to iron(II) phthalocyanine, (FcNC)2FePc [Fc = ferrocenyl; Pc = phthalocyaninato(2-) anion], was isolated and characterized using a variety of spectroscopic methods as well as single-crystal X-ray diffraction. The redox behavior of the above molecular wire was investigated through electrochemical, spectroelectrochemical, and chemical oxidation approaches and compared to that of the bis(tert-butylisocyano)iron(II) phthalocyanine reference compound, (t-BuNC)2FePc. For both complexes, the first oxidation involves the phthalocyanine ligand and results in the formation of a red phthalocyanine cation-radical-centered [(RNC)2FePc](+) species, as evidenced by their UV-vis and electron paramagnetic resonance spectra. Despite the ~11.5 Å distance between the isocyanoferrocene iron centers, the second and third oxidation potentials for (FcNC)2FePc are separated by ∼80 mV, which is indicative of a weak long-range metal-metal coupling in this system. Spectroscopic signatures of the mixed-valence [(FcNC)2FePc](2+) dication were obtained using spectroelectrochemical and chemical oxidation approaches. These experimentally assessed characteristics were also correlated with the electronic structure, redox properties, and spectroscopic signatures predicted by density functional theory (DFT) and time-dependent DFT analyses.
Reaction of [NBu4][LCuIIOH] with excess ROOH (R = cumyl or tBu) yielded [NBu4][LCuIIOOR], the reversible one-electron oxidation of which generated novel species with [CuOOR]2+ cores (formally CuIIIOOR), identified by spectroscopy and theory for the case R = cumyl. This species reacts with weak O−H bonds in TEMPO-H and 4-dimethylaminophenol (NMe2PhOH), the latter yielding LCu(OPhNMe2), which was also prepared independently. With the identification of [CuOOR]2+ complexes, the first precedent for this core in enzymes is provided, with implications for copper monooxygenase mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.