A longstanding research goal has been to understand the nature and role of copper–oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper–oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013–1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047–1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper–oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper–oxygen cores discussed.
Two new ligand sets, pipMeLH2 and NO2LH2 (pipMeL = N,N′-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide, NO2L = N,N′-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide), are reported which are designed to perturb the overall electronics of the copper(III)–hydroxide core and the resulting effects on the thermodynamics and kinetics of its hydrogen-atom abstraction (HAT) reactions. Bond dissociation energies (BDEs) for the O–H bonds of the corresponding Cu(II)–OH2 complexes were measured that reveal that changes in the redox potential for the Cu(III)/Cu(II) couple are only partially offset by opposite changes in the pKa, leading to modest differences in BDE among the three compounds. The effects of these changes were further probed by evaluating the rates of HAT by the corresponding Cu(III)–hydroxide complexes from substrates with C–H bonds of variable strength. These studies revealed an overarching linear trend in the relationship between the log k (where k is the second-order rate constant) and the ΔH of reaction. Additional subtleties in measured rates arise, however, that are associated with variations in hydrogen-atom abstraction barrier heights and tunneling effciencies over the temperature range from −80 to −20 °C, as inferred from measured kinetic isotope effects and corresponding electronic-structure-based transition-state theory calculations.
With the aim of understanding the basis for the high rate of hydrogen atom abstraction (HAT) from dihydroanthracene (DHA) by the complex LCuOH (1; L = N,N′-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide), the bond dissociation enthalpy of the reaction product LCu(H2O) (2) was determined through measurement of its pKa and E1/2 in THF solution. In so doing, an equilibrium between 2 and LCu(THF) was characterized by UV–vis and EPR spectroscopy and cyclic voltammetry (CV). A high pKa of 18.8 ± 1.8 and a low E1/2 of −0.074 V vs Fc/Fc+ in THF combined to yield an O–H BDE for 2 of 90 ± 3 kcal mol–1 that is large relative to values for most transition metal oxo/hydroxo complexes. By taking advantage of the increased stability of 1 observed in 1,2-difluorobenzene (DFB) solvent, the kinetics of the reactions of 1 with a range of substrates with varying BDE values for their C–H bonds were measured. The oxidizing power of 1 was revealed through the accelerated decay of 1 in the presence of the substrates, including THF (BDE = 92 kcal mol–1) and cyclohexane (BDE = 99 kcal mol–1). CV experiments in THF solvent showed that 1 reacted with THF via rate-determining attack at the THF C–H(D) bonds with a kinetic isotope effect of 10.2. Analysis of the kinetic and thermodynamic data provides new insights into the basis for the high reactivity of 1 and the possible involvement of species like 1 in oxidation catalysis.
Kinetic studies of the reactions of two previously characterized copper(III)-hydroxide complexes with a series of para substituted phenols (XArOH where X = NMe2, OMe, Me, H, Cl, NO2, or CF3) indicate competition between concerted CPET and sequential PT/ET pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.