Threat-related stimuli are strong competitors for attention, particularly in anxious individuals. We used functional magnetic resonance imaging (fMRI) with healthy human volunteers to study how the processing of threat-related distractors is controlled and whether this alters as anxiety levels increase. Our work builds upon prior analyses of the cognitive control functions of lateral prefrontal cortex (lateral PFC) and anterior cingulate cortex (ACC). We found that rostral ACC was strongly activated by infrequent threat-related distractors, consistent with a role for this area in responding to unexpected processing conflict caused by salient emotional stimuli. Participants with higher anxiety levels showed both less rostral ACC activity overall and reduced recruitment of lateral PFC as expectancy of threat-related distractors was established. This supports the proposal that anxiety is associated with reduced top-down control over threat-related distractors. Our results suggest distinct roles for rostral ACC and lateral PFC in governing the processing of task-irrelevant, threat-related stimuli, and indicate reduced recruitment of this circuitry in anxiety.
Dopaminergic neurotransmission may be involved in learning, reinforcement of behaviour, attention, and sensorimotor integration. Binding of the radioligand 11C-labelled raclopride to dopamine D2 receptors is sensitive to levels of endogenous dopamine, which can be released by pharmacological challenge. Here we use 11C-labelled raclopride and positron emission tomography scans to provide evidence that endogenous dopamine is released in the human striatum during a goal-directed motor task, namely a video game. Binding of raclopride to dopamine receptors in the striatum was significantly reduced during the video game compared with baseline levels of binding, consistent with increased release and binding of dopamine to its receptors. The reduction in binding of raclopride in the striatum positively correlated with the performance level during the task and was greatest in the ventral striatum. These results show, to our knowledge for the first time, behavioural conditions under which dopamine is released in humans, and illustrate the ability of positron emission tomography to detect neurotransmitter fluxes in vivo during manipulations of behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.