An international group of experts in pharmacokinetic modeling recommends a consensus nomenclature to describe in vivo molecular imaging of reversibly binding radioligands.
Dopaminergic neurotransmission may be involved in learning, reinforcement of behaviour, attention, and sensorimotor integration. Binding of the radioligand 11C-labelled raclopride to dopamine D2 receptors is sensitive to levels of endogenous dopamine, which can be released by pharmacological challenge. Here we use 11C-labelled raclopride and positron emission tomography scans to provide evidence that endogenous dopamine is released in the human striatum during a goal-directed motor task, namely a video game. Binding of raclopride to dopamine receptors in the striatum was significantly reduced during the video game compared with baseline levels of binding, consistent with increased release and binding of dopamine to its receptors. The reduction in binding of raclopride in the striatum positively correlated with the performance level during the task and was greatest in the ventral striatum. These results show, to our knowledge for the first time, behavioural conditions under which dopamine is released in humans, and illustrate the ability of positron emission tomography to detect neurotransmitter fluxes in vivo during manipulations of behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.