Surface air temperature, precipitation, and insolation over the conterminous United States region from the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model (RCM) hindcast study are evaluated using the Jet Propulsion Laboratory (JPL) Regional Climate Model Evaluation System (RCMES). All RCMs reasonably simulate the observed climatology of these variables. RCM skill varies more widely for the magnitude of spatial variability than the pattern. The multimodel ensemble is among the best performers for all these variables. Systematic biases occur across these RCMs for the annual means, with warm biases over the Great Plains (GP) and cold biases in the Atlantic and the Gulf of Mexico (GM) coastal regions. Wet biases in the Pacific Northwest and dry biases in the GM/southern Great Plains also occur in most RCMs. All RCMs suffer problems in simulating summer rainfall in the Arizona-New Mexico region. RCMs generally overestimate surface insolation, especially in the eastern United States. Negative correlation between the biases in insolation and precipitation suggest that these two fields are related, likely via clouds. Systematic variations in biases for regions, seasons, variables, and metrics suggest that the bias correction in applying climate model data to assess the climate impact on various sectors must be performed accordingly. Precipitation evaluation with multiple observations reveals that observational data can be an important source of uncertainties in model evaluation; thus, cross examination of observational data is important for model evaluation.
We describe a reusable architecture and implementation framework for managing science processing pipelines for mission ground data systems. Our system, dubbed "PCS", for Process Control System, improves upon an existing software component, the OODT Catalog and Archive (CAS), which has already supported the QuikSCAT, SeaWinds and AMT earth science missions. This paper focuses on PCS within the context of two current earth science missions: the Orbiting Carbon Observatory (OCO), and NPP Sounder PEATE projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.